This repository was archived by the owner on Dec 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathvilbert_backbone.py
185 lines (160 loc) · 6.4 KB
/
vilbert_backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import logging
from typing import Dict, List
import torch
from overrides import overrides
from allennlp.data.fields.text_field import TextFieldTensors
from allennlp.data.vocabulary import Vocabulary
from allennlp.modules.backbones.backbone import Backbone
from allennlp.modules.transformer import (
BiModalEncoder,
ImageFeatureEmbeddings,
TransformerEmbeddings,
TransformerPooler,
)
logger = logging.getLogger(__name__)
@Backbone.register("vilbert")
@Backbone.register("vilbert_from_huggingface", constructor="from_huggingface_model_name")
class VilbertBackbone(Backbone):
"""
Uses a Vilbert model as a `Backbone`.
Registered as a `Backbone` with name "vilbert".
"""
def __init__(
self,
vocab: Vocabulary,
text_embeddings: TransformerEmbeddings,
image_embeddings: ImageFeatureEmbeddings,
encoder: BiModalEncoder,
pooled_output_dim: int,
fusion_method: str = "sum",
dropout: float = 0.1,
vocab_namespace: str = "tokens",
) -> None:
super().__init__()
self.fusion_method = fusion_method
self.text_embeddings = text_embeddings
self.image_embeddings = image_embeddings
self.encoder = encoder
self.t_pooler = TransformerPooler(encoder.hidden_size1, pooled_output_dim)
self.v_pooler = TransformerPooler(encoder.hidden_size2, pooled_output_dim)
self.dropout = torch.nn.Dropout(dropout)
self._vocab = vocab
self._namespace = vocab_namespace
@classmethod
def from_huggingface_model_name(
cls,
vocab: Vocabulary,
model_name: str,
image_feature_dim: int,
image_num_hidden_layers: int,
image_hidden_size: int,
image_num_attention_heads: int,
combined_hidden_size: int,
combined_num_attention_heads: int,
pooled_output_dim: int,
image_intermediate_size: int,
image_attention_dropout: float,
image_hidden_dropout: float,
image_biattention_id: List[int],
text_biattention_id: List[int],
text_fixed_layer: int,
image_fixed_layer: int,
fusion_method: str = "sum",
):
text_embeddings = TransformerEmbeddings.from_pretrained_module(model_name)
image_embeddings = ImageFeatureEmbeddings(
feature_size=image_feature_dim,
embedding_size=image_hidden_size,
dropout=image_hidden_dropout,
)
encoder = BiModalEncoder.from_pretrained_module(
model_name,
num_hidden_layers2=image_num_hidden_layers,
hidden_size2=image_hidden_size,
num_attention_heads2=image_num_attention_heads,
combined_hidden_size=combined_hidden_size,
combined_num_attention_heads=combined_num_attention_heads,
intermediate_size2=image_intermediate_size,
attention_dropout2=image_attention_dropout,
hidden_dropout2=image_hidden_dropout,
biattention_id1=text_biattention_id,
biattention_id2=image_biattention_id,
fixed_layer1=text_fixed_layer,
fixed_layer2=image_fixed_layer,
)
return cls(
vocab=vocab,
text_embeddings=text_embeddings,
image_embeddings=image_embeddings,
encoder=encoder,
pooled_output_dim=pooled_output_dim,
fusion_method=fusion_method,
)
@overrides
def forward(
self, # type: ignore
box_features: torch.Tensor,
box_coordinates: torch.Tensor,
box_mask: torch.Tensor,
text: TextFieldTensors,
) -> Dict[str, torch.Tensor]:
batch_size, _, feature_size = box_features.size()
if "token_ids" in text["tokens"]:
token_ids = text["tokens"]["token_ids"]
else:
token_ids = text["tokens"]["tokens"]
# Shape: (batch_size, num_tokens)
token_type_ids = text["tokens"].get("type_ids")
# Shape: (batch_size, num_tokens)
attention_mask = text["tokens"].get("mask")
# Shape: (batch_size, num_tokens, embedding_dim)
embedding_output = self.text_embeddings(token_ids, token_type_ids)
num_tokens = embedding_output.size(1)
# this attention mask is more simple than the triangular masking of
# causal attention used in OpenAI GPT, we just need to prepare the
# broadcast dimension here.
if attention_mask is not None:
extended_attention_mask = attention_mask
else:
extended_attention_mask = None
extended_image_attention_mask = box_mask
# Shape: (batch_size, feature_size, num_tokens)
# TODO (epwalsh): Why all zeros?? This doesn't seem right.
extended_co_attention_mask = torch.zeros(
batch_size,
feature_size,
num_tokens,
dtype=extended_image_attention_mask.dtype,
)
# Shape: (batch_size, num_boxes, image_embedding_dim)
v_embedding_output = self.image_embeddings(box_features, box_coordinates)
encoded_layers_t, encoded_layers_v = self.encoder(
embedding_output,
v_embedding_output,
extended_attention_mask,
extended_image_attention_mask,
extended_co_attention_mask,
)
# Shape: (batch_size, num_tokens, embedding_dim)
sequence_output_t = encoded_layers_t[:, :, :, -1]
# Shape: (batch_size, num_boxes, image_embedding_dim)
sequence_output_v = encoded_layers_v[:, :, :, -1]
# Shape: (batch_size, pooled_output_dim)
pooled_output_t = self.t_pooler(sequence_output_t)
# Shape: (batch_size, pooled_output_dim)
pooled_output_v = self.v_pooler(sequence_output_v)
if self.fusion_method == "sum":
pooled_output = self.dropout(pooled_output_t + pooled_output_v)
elif self.fusion_method == "mul":
pooled_output = self.dropout(pooled_output_t * pooled_output_v)
else:
raise ValueError(f"Fusion method '{self.fusion_method}' not supported")
return {
"encoded_boxes": sequence_output_v,
"encoded_boxes_mask": box_mask,
"encoded_boxes_pooled": pooled_output_v,
"encoded_text": sequence_output_t,
"encoded_text_mask": attention_mask,
"encoded_text_pooled": pooled_output_t,
"pooled_boxes_and_text": pooled_output,
}