-
Notifications
You must be signed in to change notification settings - Fork 4.5k
/
Copy pathanalytics_streams.py
388 lines (334 loc) · 14.3 KB
/
analytics_streams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#
# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
#
from abc import ABC, abstractmethod
from collections import defaultdict
from typing import Any, Iterable, List, Mapping, MutableMapping, Optional
from urllib.parse import urlencode
import pendulum
import requests
from airbyte_cdk.sources.streams.core import package_name_from_class
from airbyte_cdk.sources.utils import casing
from airbyte_cdk.sources.utils.schema_helpers import ResourceSchemaLoader
from airbyte_protocol.models import SyncMode
from source_linkedin_ads.streams import Campaigns, Creatives, IncrementalLinkedinAdsStream
from .utils import get_parent_stream_values, transform_data
# Number of days ahead for date slices, from start date.
WINDOW_IN_DAYS = 30
# List of Reporting Metrics fields available for fetch
ANALYTICS_FIELDS_V2: List = [
"actionClicks",
"adUnitClicks",
"approximateUniqueImpressions",
"cardClicks",
"cardImpressions",
"clicks",
"commentLikes",
"comments",
"companyPageClicks",
"conversionValueInLocalCurrency",
"costInLocalCurrency",
"costInUsd",
"dateRange",
"documentCompletions",
"documentFirstQuartileCompletions",
"documentMidpointCompletions",
"documentThirdQuartileCompletions",
"downloadClicks",
"externalWebsiteConversions",
"externalWebsitePostClickConversions",
"externalWebsitePostViewConversions",
"follows",
"fullScreenPlays",
"impressions",
"jobApplications",
"jobApplyClicks",
"landingPageClicks",
"leadGenerationMailContactInfoShares",
"leadGenerationMailInterestedClicks",
"likes",
"oneClickLeadFormOpens",
"oneClickLeads",
"opens",
"otherEngagements",
"pivotValues",
"postClickJobApplications",
"postClickJobApplyClicks",
"postClickRegistrations",
"postViewJobApplications",
"postViewJobApplyClicks",
"postViewRegistrations",
"reactions",
"registrations",
"sends",
"shares",
"talentLeads",
"textUrlClicks",
"totalEngagements",
"validWorkEmailLeads",
"videoCompletions",
"videoFirstQuartileCompletions",
"videoMidpointCompletions",
"videoStarts",
"videoThirdQuartileCompletions",
"videoViews",
"viralCardClicks",
"viralCardImpressions",
"viralClicks",
"viralCommentLikes",
"viralComments",
"viralCompanyPageClicks",
"viralDocumentCompletions",
"viralDocumentFirstQuartileCompletions",
"viralDocumentMidpointCompletions",
"viralDocumentThirdQuartileCompletions",
"viralDownloadClicks",
"viralExternalWebsiteConversions",
"viralExternalWebsitePostClickConversions",
"viralExternalWebsitePostViewConversions",
"viralFollows",
"viralFullScreenPlays",
"viralImpressions",
"viralJobApplications",
"viralJobApplyClicks",
"viralLandingPageClicks",
"viralLikes",
"viralOneClickLeadFormOpens",
"viralOneClickLeads",
"viralOtherEngagements",
"viralPostClickJobApplications",
"viralPostClickJobApplyClicks",
"viralPostClickRegistrations",
"viralPostViewJobApplications",
"viralPostViewJobApplyClicks",
"viralPostViewRegistrations",
"viralReactions",
"viralRegistrations",
"viralShares",
"viralTotalEngagements",
"viralVideoCompletions",
"viralVideoFirstQuartileCompletions",
"viralVideoMidpointCompletions",
"viralVideoStarts",
"viralVideoThirdQuartileCompletions",
"viralVideoViews",
]
class LinkedInAdsAnalyticsStream(IncrementalLinkedinAdsStream, ABC):
"""
AdAnalytics Streams more info:
https://learn.microsoft.com/en-us/linkedin/marketing/integrations/ads-reporting/ads-reporting?tabs=curl&view=li-lms-2023-05#analytics-finder
"""
endpoint = "adAnalytics"
# For Analytics streams, the primary_key is the entity of the pivot [Campaign URN, Creative URN, etc.] + `end_date`
primary_key = ["pivotValues", "end_date"]
cursor_field = "end_date"
records_limit = 15000
FIELDS_CHUNK_SIZE = 18
def get_json_schema(self) -> Mapping[str, Any]:
schema = ResourceSchemaLoader(package_name_from_class(self.__class__)).get_schema("ad_analytics")
schema["properties"].update({self.search_param_value: {"type": ["null", "string"]}})
return schema
def __init__(self, name: str = None, pivot_by: str = None, time_granularity: str = None, **kwargs):
self.user_stream_name = name
if pivot_by:
self.pivot_by = pivot_by
if time_granularity:
self.time_granularity = time_granularity
super().__init__(**kwargs)
@property
@abstractmethod
def search_param(self) -> str:
"""
:return: Search parameters for the request
"""
@property
@abstractmethod
def search_param_value(self) -> str:
"""
:return: Name field to filter by
"""
@property
@abstractmethod
def parent_values_map(self) -> Mapping[str, str]:
"""
:return: Mapping for parent child relation
"""
@property
def name(self) -> str:
"""We override the stream name to let the user change it via configuration."""
name = self.user_stream_name or self.__class__.__name__
return casing.camel_to_snake(name)
@property
def base_analytics_params(self) -> MutableMapping[str, Any]:
"""Define the base parameters for analytics streams"""
return {"q": "analytics", "pivot": f"(value:{self.pivot_by})", "timeGranularity": f"(value:{self.time_granularity})"}
def request_headers(
self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None
) -> Mapping[str, Any]:
headers = super().request_headers(stream_state, stream_slice, next_page_token)
return headers | {"X-Restli-Protocol-Version": "2.0.0"}
def request_params(
self,
stream_state: Mapping[str, Any],
stream_slice: Mapping[str, Any] = None,
next_page_token: Mapping[str, Any] = None,
) -> MutableMapping[str, Any]:
params = self.base_analytics_params
params.update(**self.update_analytics_params(stream_slice))
params[self.search_param] = f"List(urn%3Ali%3A{self.search_param_value}%3A{self.get_primary_key_from_slice(stream_slice)})"
return urlencode(params, safe="():,%")
@staticmethod
def update_analytics_params(stream_slice: Mapping[str, Any]) -> Mapping[str, Any]:
"""
Produces the date range parameters from input stream_slice
"""
date_range = stream_slice["dateRange"]
return {
"dateRange": f"(start:(year:{date_range['start.year']},month:{date_range['start.month']},day:{date_range['start.day']}),"
f"end:(year:{date_range['end.year']},month:{date_range['end.month']},day:{date_range['end.day']}))",
# Chunk of fields
"fields": stream_slice["fields"],
}
def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]:
"""
Pagination is not supported
(See Restrictions: https://learn.microsoft.com/en-us/linkedin/marketing/integrations/ads-reporting/ads-reporting?view=li-lms-2023-09&tabs=http#restrictions)
"""
parsed_response = response.json()
is_elements_less_than_limit = len(parsed_response.get("elements")) < self.records_limit
# Note: The API might return fewer records than requested within the limits during pagination.
# This behavior is documented at: https://github.com/airbytehq/airbyte/issues/34164
paging_params = parsed_response.get("paging", {})
is_end_of_records = (
paging_params["total"] - paging_params["start"] <= self.records_limit
if all(param in paging_params for param in ("total", "start"))
else True
)
if is_elements_less_than_limit and is_end_of_records:
return None
raise Exception(
f"Limit {self.records_limit} elements exceeded. "
f"Try to request your data in more granular pieces. "
f"(For example switch `Time Granularity` from MONTHLY to DAILY)"
)
def get_primary_key_from_slice(self, stream_slice) -> str:
return stream_slice.get(self.primary_slice_key)
def stream_slices(
self, *, sync_mode: SyncMode, cursor_field: Optional[List[str]] = None, stream_state: Optional[Mapping[str, Any]] = None
) -> Iterable[List[Mapping[str, Any]]]:
"""
LinkedIn has a max of 20 fields per request. We make chunks by size of 19 fields to have the `dateRange` be included as well.
https://learn.microsoft.com/en-us/linkedin/marketing/integrations/ads-reporting/ads-reporting?view=li-lms-2023-05&tabs=http#requesting-specific-metrics-in-the-analytics-finder
:param sync_mode:
:param cursor_field:
:param stream_state:
:return: Iterable with List of stream slices within the same date range and chunked fields, example
[{'campaign_id': 123, 'fields': 'field_1,field_2,dateRange', 'dateRange': {'start.day': 1, 'start.month': 1, 'start.year': 2020, 'end.day': 30, 'end.month': 1, 'end.year': 2020}},
{'campaign_id': 123, 'fields': 'field_2,field_3,dateRange', 'dateRange': {'start.day': 1, 'start.month': 1, 'start.year': 2020, 'end.day': 30, 'end.month': 1, 'end.year': 2020}},
{'campaign_id': 123, 'fields': 'field_4,field_5,dateRange', 'dateRange': {'start.day': 1, 'start.month': 1, 'start.year': 2020, 'end.day': 30, 'end.month': 1, 'end.year': 2020}}]
"""
parent_stream = self.parent_stream(config=self.config)
stream_state = stream_state or {self.cursor_field: self.config.get("start_date")}
for record in parent_stream.read_records(sync_mode=sync_mode):
base_slice = get_parent_stream_values(record, self.parent_values_map)
for date_slice in self.get_date_slices(stream_state.get(self.cursor_field), self.config.get("end_date")):
date_slice_with_fields: List = []
for fields_set in self.chunk_analytics_fields():
base_slice["fields"] = ",".join(fields_set)
date_slice_with_fields.append(base_slice | date_slice)
yield date_slice_with_fields
@staticmethod
def get_date_slices(start_date: str, end_date: str = None, window_in_days: int = WINDOW_IN_DAYS) -> Iterable[Mapping[str, Any]]:
"""
Produces date slices from start_date to end_date (if specified),
otherwise end_date will be present time.
"""
start = pendulum.parse(start_date)
end = pendulum.parse(end_date) if end_date else pendulum.now()
date_slices = []
while start < end:
slice_end_date = start.add(days=window_in_days)
date_slice = {
"start.day": start.day,
"start.month": start.month,
"start.year": start.year,
"end.day": slice_end_date.day,
"end.month": slice_end_date.month,
"end.year": slice_end_date.year,
}
date_slices.append({"dateRange": date_slice})
start = slice_end_date
yield from date_slices
@staticmethod
def chunk_analytics_fields(
fields: List = ANALYTICS_FIELDS_V2,
fields_chunk_size: int = FIELDS_CHUNK_SIZE,
) -> Iterable[List]:
"""
Chunks the list of available fields into the chunks of equal size.
"""
# Make chunks
chunks = list((fields[f : f + fields_chunk_size] for f in range(0, len(fields), fields_chunk_size)))
# Make sure base_fields are within the chunks
for chunk in chunks:
if "dateRange" not in chunk:
chunk.append("dateRange")
if "pivotValues" not in chunk:
chunk.append("pivotValues")
yield from chunks
def read_records(
self, stream_state: Mapping[str, Any] = None, stream_slice: Optional[Mapping[str, Any]] = None, **kwargs
) -> Iterable[Mapping[str, Any]]:
merged_records = defaultdict(dict)
for field_slice in stream_slice:
for rec in super().read_records(stream_slice=field_slice, **kwargs):
merged_records[f"{rec[self.cursor_field]}-{rec['pivotValues']}"].update(rec)
yield from merged_records.values()
def parse_response(self, response: requests.Response, **kwargs) -> Iterable[Mapping]:
"""
We need to get out the nested complex data structures for further normalization, so the transform_data method is applied.
"""
for rec in transform_data(response.json().get("elements")):
yield rec | {self.search_param_value: self.get_primary_key_from_slice(kwargs.get("stream_slice")), "pivot": self.pivot_by}
class AdCampaignAnalytics(LinkedInAdsAnalyticsStream):
"""
Campaign Analytics stream.
"""
endpoint = "adAnalytics"
parent_stream = Campaigns
parent_values_map = {"campaign_id": "id"}
search_param = "campaigns"
search_param_value = "sponsoredCampaign"
pivot_by = "CAMPAIGN"
time_granularity = "DAILY"
class AdCreativeAnalytics(LinkedInAdsAnalyticsStream):
"""
Creative Analytics stream.
"""
parent_stream = Creatives
parent_values_map = {"creative_id": "id"}
search_param = "creatives"
search_param_value = "sponsoredCreative"
pivot_by = "CREATIVE"
time_granularity = "DAILY"
def get_primary_key_from_slice(self, stream_slice) -> str:
creative_id = stream_slice.get(self.primary_slice_key).split(":")[-1]
return creative_id
class AdImpressionDeviceAnalytics(AdCampaignAnalytics):
pivot_by = "IMPRESSION_DEVICE_TYPE"
class AdMemberCompanySizeAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_COMPANY_SIZE"
class AdMemberIndustryAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_INDUSTRY"
class AdMemberSeniorityAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_SENIORITY"
class AdMemberJobTitleAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_JOB_TITLE"
class AdMemberJobFunctionAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_JOB_FUNCTION"
class AdMemberCountryAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_COUNTRY_V2"
class AdMemberRegionAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_REGION_V2"
class AdMemberCompanyAnalytics(AdCampaignAnalytics):
pivot_by = "MEMBER_COMPANY"