-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_codegen_online_v1.py
177 lines (138 loc) · 5.32 KB
/
train_codegen_online_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#
# Copyright (c) 2023 Tencent, inc, 2022, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
#
import io
import logging
import math
import os
import pprint
import sys
import time
import json
import pdb
from tqdm import tqdm
from datetime import datetime
import transformers
import torch
from datasets.apps_dataset_codegen_online_v1 import APPSBaseDataset
from trainers.trainer_rl_online_v1 import Trainer_RL
from transformers import Trainer
from trainers.modeling_codegen import CodeGenForCausalLM
from trainers.modeling_t5 import T5ForConditionalGeneration
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
def run_training(args, train_data):
if args.model in ['codet5-base', 'codet5-large', 'codet5-large-ntp-py']:
model_path = args.model_path if args.model_path is not None else 'models/{}'.format(args.model) # Salesforce
print("Loading model from {}...".format(model_path))
model = T5ForConditionalGeneration.from_pretrained(
model_path,
tuning_mode=args.tuning_mode,
clone_rl_head=args.clone_rl_head)
if args.clone_rl_head:
# Optional: clone a seperate RL head and initialize the model weights from finetuned LM head
print("Initializing RL head with finetuned LM head...")
lm_head_params = model.lm_head.weight.detach().numpy()
model.rl_head.weight = torch.nn.Parameter(torch.tensor(lm_head_params))
elif args.model in ['codegen-2B-multi', 'codegen-2B-mono', 'codegen-350M-mono']:
if args.model_path is None:
model_path = 'models/{}'.format(args.model)
else:
model_path = args.model_path
print("Loading codegen model from {}...".format(model_path))
# model = AutoModelForCausalLM.from_pretrained(model_path)
model = CodeGenForCausalLM.from_pretrained(model_path, tuning_mode=args.tuning_mode)
print('Finished loading model {}'.format(args.model))
start_iteration = 0
train_data.start_iteration = start_iteration
print(f"Starting main loop")
training_args = transformers.TrainingArguments(
output_dir=args.save_dir,
overwrite_output_dir=True,
do_train=True,
do_eval=False,
do_predict=True,
evaluation_strategy='no',
eval_steps=0,
num_train_epochs=args.epochs,
per_device_train_batch_size=args.batch_size_per_replica,
gradient_accumulation_steps=args.grad_acc_steps,
learning_rate=args.lr,
weight_decay=0.05,
lr_scheduler_type='polynomial', #constant_with_warmup
warmup_steps=500,
logging_dir=args.save_dir,
logging_first_step=True,
logging_steps=args.log_freq,
save_steps=args.save_freq,
save_total_limit=args.save_total_limit,
dataloader_drop_last=True,
dataloader_num_workers=0 if args.db else 8,
local_rank=args.local_rank,
deepspeed=args.deepspeed,
fp16=args.fp16,
)
if args.tuning_mode in ['critic', 'rl']:
trainer = Trainer_RL(
model=model,
args=training_args,
train_dataset=train_data,
tuning_mode=args.tuning_mode,
)
else:
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_data,
)
trainer.train(update_freq=args.update_freq, update_root=args.update_root)
if args.local_rank == 0:
model.save_pretrained(os.path.join(args.save_dir, "final_checkpoint"))
def get_dataset(args):
fnames = os.listdir(args.train_path)
if 'data_log.txt' in fnames:
fnames.remove('data_log.txt')
# train in debugging mode with small data split
if args.db:
fnames = fnames[:50]
if args.model in ['codegen-2B-multi', 'codegen-2B-mono', 'codegen-350M-mono']:
max_tokens = 1312
max_src_tokens = 800 # 600
else:
max_tokens = 1024
max_src_tokens = -1
train_data = APPSBaseDataset(
dataroot=args.train_path,
problem_dirs=fnames,
model=args.model,
max_tokens=max_tokens,
max_src_tokens=max_src_tokens,
sample_mode=args.sample_mode,
tuning_mode=args.tuning_mode,
relative_returns=args.relative_returns,
memory_length=args.memory_length,
fine_grained_feedback=args.fine_grained_feedback,
fine_grained_weight=args.fine_grained_weight,
adaptive_feedback=args.adaptive_feedback,
update_root=args.update_root,
fine_grained_type=args.fine_grained_type,
)
return train_data
def main(args):
os.environ["WANDB_MODE"] = "offline"
args.save_dir = args.save_dir + args.save_dir_suffix
argsdict = vars(args)
print(pprint.pformat(argsdict))
os.makedirs(args.save_dir, exist_ok=True)
# Load dataset
train_data = get_dataset(args)
# Save args to file
json.dump(argsdict, open(os.path.join(args.save_dir, "args.json"), 'w'))
# Load and train model; save model checkpoints
run_training(args, train_data)
if __name__ == "__main__":
from configs.train_configs import *
main(args)