-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_storage.py
43 lines (36 loc) · 1.79 KB
/
feature_storage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
from .feature import InterpacketIntervalFeature, PacketLengthFeature
from .interval_feature import (
InterpacketIntervalFunctionPerTimeFeature,
PacketLengthFunctionPerTimeFeature,
PacketNumberPerTimeFeature,
MeanFunction,
SumFunction
)
class FeatureStorage:
def __init__(self):
self.features = [
InterpacketIntervalFeature(),
PacketLengthFeature(),
InterpacketIntervalFunctionPerTimeFeature(func=MeanFunction()),
InterpacketIntervalFunctionPerTimeFeature(func=SumFunction()),
InterpacketIntervalFunctionPerTimeFeature(func=MeanFunction(), max_interpacket_interval_time=0.05),
InterpacketIntervalFunctionPerTimeFeature(func=SumFunction(), max_interpacket_interval_time=0.05),
PacketLengthFunctionPerTimeFeature(func=MeanFunction()),
PacketLengthFunctionPerTimeFeature(func=SumFunction()),
PacketLengthFunctionPerTimeFeature(func=MeanFunction(), max_interpacket_interval_time=0.05),
PacketLengthFunctionPerTimeFeature(func=SumFunction(), max_interpacket_interval_time=0.05),
PacketNumberPerTimeFeature(),
]
def extract_features(self, packet):
for feature in self.features:
feature.extract_feature(packet)
def _concatenate_features_dfs(self, get_feature_fn):
feature_dfs = []
for feature in self.features:
feature_dfs.append(get_feature_fn(feature))
return pd.concat(feature_dfs, axis=1)
def get_features(self):
return self._concatenate_features_dfs(get_feature_fn=lambda feature: feature.get_feature())
def get_time_series_features(self):
return self._concatenate_features_dfs(get_feature_fn=lambda feature: feature.get_time_series_feature())