-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatamodule.py
180 lines (145 loc) · 5.66 KB
/
datamodule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader
from datasets_flow import VSSLFlowDataset
from torchvision import transforms
from PIL import Image
import os
import csv
def convert_to_vggss(filename):
# prefix = filename[0:11]
# suffix = int(filename[12:].replace(".mp4", ""))
# return f"{prefix}_{suffix*100}_{(suffix+10)*1000}"
return filename.replace(".mp4", "")
class NoPriorDataModule(LightningDataModule):
def __init__(self, args):
super().__init__()
self.args = args
def setup(self, stage):
self.train_dataset = self.setup_train_dataset(self.args)
self.val_dataset = self.setup_val_dataset(self.args)
def train_dataloader(self):
dl = DataLoader(
dataset=self.train_dataset,
batch_size=self.args.batch_size,
pin_memory=False,
drop_last=True,
shuffle=True,
num_workers=self.args.num_workers
)
return dl
def val_dataloader(self):
dl = DataLoader(
dataset=self.val_dataset,
batch_size=1,
pin_memory=False,
drop_last=False,
num_workers=self.args.num_workers
)
return dl
def test_dataloader(self):
dl = DataLoader(
dataset=self.val_dataset,
batch_size=1,
pin_memory=False,
drop_last=False,
num_workers=self.args.num_workers
)
return dl
def setup_train_dataset(self, args):
audio_path = os.path.join(args.train_data_path, "audio/")
img_path = os.path.join(args.train_data_path, "frames/")
flow_path = os.path.join(args.train_data_path, "flow/")
dataset = open(f"metadata/{args.trainset}.txt").read().splitlines()
img_items = os.listdir(img_path)
img_items = [item.replace(".jpg", "") for item in img_items]
for i in range(len(dataset)):
if dataset[i] not in img_items:
print(f"Removing {dataset[i]} from dataset")
dataset[i] = None
dataset = [item for item in dataset if item is not None]
print(len(dataset))
if 'vgg' in args.trainset:
dataset = [convert_to_vggss(item) for item in dataset]
audio = []
frames = []
for sample in dataset:
audio.append(sample + ".wav")
frames.append(sample + ".jpg")
audio = sorted(audio)
frames = sorted(frames)
audio_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.0], std=[12.0])])
print("Train Dataset Initialized")
return VSSLFlowDataset(
mode='train',
img_files=frames,
audio_files=audio,
img_path=img_path,
flow_path=flow_path,
audio_path=audio_path,
concat_num=args.concat_num,
audio_transform=audio_transform
)
def setup_val_dataset(self, args):
audio_path = os.path.join(args.test_data_path, "audio/")
img_path = os.path.join(args.test_data_path, "frames/")
flow_path = os.path.join(args.test_data_path, "flow/")
if args.testset == 'flickr':
testcsv = 'metadata/flickr_test_trimmed.csv'
elif args.testset == 'flickr_expanded':
testcsv = 'metadata/flickr_test_expanded.csv'
elif args.testset == 'vggss':
testcsv = 'metadata/vggss_test_trimmed.csv'
elif args.testset == 'music_duet':
testcsv = 'metadata/music_duet_test.csv'
elif args.testset == 'music_solo':
testcsv = 'metadata/music_solo_test.csv'
data = []
with open(testcsv) as f:
csv_reader = csv.reader(f)
for item in csv_reader:
data.append(item[0])
img_items = os.listdir(img_path)
img_items = [item.replace(".jpg", "") for item in img_items]
for i in range(len(data)):
if data[i] not in img_items:
print(f"Removing {data[i]} from dataset")
data[i] = None
flow_x_items = os.listdir(os.path.join(flow_path, "flow_x/"))
flow_x_items = [item.replace(".jpg", "") for item in flow_x_items]
for i in range(len(data)):
if data[i] is not None and data[i] not in flow_x_items:
print(f"Removing {data[i]} from dataset")
data[i] = None
flow_y_items = os.listdir(os.path.join(flow_path, "flow_y/"))
flow_y_items = [item.replace(".jpg", "") for item in flow_y_items]
for i in range(len(data)):
if data[i] is not None and data[i] not in flow_y_items:
print(f"Removing {data[i]} from dataset")
data[i] = None
data = [item for item in data if item is not None]
# Modify VGGSS strings if using VGGSS
if 'vggss' in args.testset:
data = [convert_to_vggss(item) for item in data]
audio = []
frames = []
for sample in data:
audio.append(sample + ".wav")
frames.append(sample + ".jpg")
audio = sorted(audio)
frames = sorted(frames)
audio_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.0], std=[12.0])])
print("Test Dataset Initialized")
return VSSLFlowDataset(
mode='test',
img_files=frames,
audio_files=audio,
img_path=img_path,
flow_path=flow_path,
audio_path=audio_path,
concat_num=args.concat_num,
audio_transform=audio_transform,
)