-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathmulticolcnn.json
10574 lines (10574 loc) · 616 KB
/
multicolcnn.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"children": [
{
"id": "/page/0/Page/277",
"block_type": "Page",
"html": "<content-ref src='/page/0/PageHeader/14'></content-ref><content-ref src='/page/0/SectionHeader/0'></content-ref><content-ref src='/page/0/Text/1'></content-ref><content-ref src='/page/0/SectionHeader/2'></content-ref><content-ref src='/page/0/Text/3'></content-ref><content-ref src='/page/0/SectionHeader/4'></content-ref><content-ref src='/page/0/Text/5'></content-ref><content-ref src='/page/0/Text/6'></content-ref><content-ref src='/page/0/Text/7'></content-ref><content-ref src='/page/0/Text/8'></content-ref><content-ref src='/page/0/Text/9'></content-ref><content-ref src='/page/0/Text/10'></content-ref><content-ref src='/page/0/Text/11'></content-ref><content-ref src='/page/0/SectionHeader/12'></content-ref><content-ref src='/page/0/Text/13'></content-ref><content-ref src='/page/0/PageFooter/15'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/0/PageHeader/14",
"block_type": "PageHeader",
"html": "",
"polygon": [
[
18.119998931884766,
211.199951171875
],
[
36.2599983215332,
211.199951171875
],
[
36.2599983215332,
559.2799987792969
],
[
18.119998931884766,
559.2799987792969
]
],
"bbox": [
18.119998931884766,
211.199951171875,
36.2599983215332,
559.2799987792969
],
"children": null,
"section_hierarchy": {},
"images": {}
},
{
"id": "/page/0/SectionHeader/0",
"block_type": "SectionHeader",
"html": "<h1>An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting</h1>",
"polygon": [
[
117.5888671875,
105.9219970703125
],
[
477.371826171875,
105.9219970703125
],
[
477.371826171875,
138.201171875
],
[
117.5888671875,
138.201171875
]
],
"bbox": [
117.5888671875,
105.9219970703125,
477.371826171875,
138.201171875
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/0"
},
"images": {}
},
{
"id": "/page/0/Text/1",
"block_type": "Text",
"html": "<p block-type=\"Text\">Diptodip Deb Georgia Institute of Technology [email protected]</p>",
"polygon": [
[
104.81396484375,
163.4853515625
],
[
259.00787353515625,
163.4853515625
],
[
259.00787353515625,
202.3262939453125
],
[
104.81396484375,
202.3262939453125
]
],
"bbox": [
104.81396484375,
163.4853515625,
259.00787353515625,
202.3262939453125
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/0"
},
"images": {}
},
{
"id": "/page/0/SectionHeader/2",
"block_type": "SectionHeader",
"html": "<h1>Abstract</h1>",
"polygon": [
[
144.1845703125,
232.4891357421875
],
[
190.48028564453125,
232.4891357421875
],
[
190.48028564453125,
244.4443359375
],
[
144.1845703125,
244.4443359375
]
],
"bbox": [
144.1845703125,
232.4891357421875,
190.48028564453125,
244.4443359375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/2"
},
"images": {}
},
{
"id": "/page/0/Text/3",
"block_type": "Text",
"html": "<p block-type=\"Text\"><i>We propose the use of dilated filters to construct an ag</i><i>gregation module in a multicolumn convolutional neural</i> <i>network for perspective-free counting. Counting is a com</i><i>mon problem in computer vision (e.g. traffic on the street or</i> <i>pedestrians in a crowd). Modern approaches to the count</i><i>ing problem involve the production of a density map via re</i><i>gression whose integral is equal to the number of objects</i> <i>in the image. However, objects in the image can occur at</i> <i>different scales (e.g. due to perspective effects) which can</i> <i>make it difficult for a learning agent to learn the proper</i> <i>density map. While the use of multiple columns to extract</i> <i>multiscale information from images has been shown be</i><i>fore, our approach aggregates the multiscale information</i> <i>gathered by the multicolumn convolutional neural network</i> <i>to improve performance. Our experiments show that our</i> <i>proposed network outperforms the state-of-the-art on many</i> <i>benchmark datasets, and also that using our aggregation</i> <i>module in combination with a higher number of columns is</i> <i>beneficial for multiscale counting.</i></p>",
"polygon": [
[
49.904296875,
258.9959716796875
],
[
287.47265625,
258.9959716796875
],
[
287.47265625,
485.33203125
],
[
49.904296875,
485.33203125
]
],
"bbox": [
49.904296875,
258.9959716796875,
287.47265625,
485.33203125
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/2"
},
"images": {}
},
{
"id": "/page/0/SectionHeader/4",
"block_type": "SectionHeader",
"html": "<h1>1. Introduction</h1>",
"polygon": [
[
50.016357421875,
512.06591796875
],
[
128.49609375,
512.06591796875
],
[
128.49609375,
524.0211181640625
],
[
50.016357421875,
524.0211181640625
]
],
"bbox": [
50.016357421875,
512.06591796875,
128.49609375,
524.0211181640625
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">Learning to count the number of objects in an image is a deceptively difficult problem with many interesting applications, such as surveillance <a href=\"#page-8-0\">[20]</a>, traffic monitoring <a href=\"#page-8-1\">[14]</a> and medical image analysis <a href=\"#page-8-2\">[22]</a>. In many of these application areas, the objects to be counted vary widely in appearance, size and shape, and labeled training data is typically sparse. These factors pose a significant computer vision and machine learning challenge.</p>",
"polygon": [
[
49.0078125,
533.7682189941406
],
[
286.576171875,
533.7682189941406
],
[
286.576171875,
627.4168395996094
],
[
49.0078125,
627.4168395996094
]
],
"bbox": [
49.0078125,
533.7682189941406,
286.576171875,
627.4168395996094
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">Lempitsky et al. <a href=\"#page-8-3\">[15]</a> showed that it is possible to learn to count without learning to explicitly detect and localize individual objects. Instead, they propose learning to predict a density map whose integral over the image equals the number of objects in the image. This approach has been adopted by many later works (Cf. <a href=\"#page-8-4\">[18,</a> <a href=\"#page-9-0\">28]</a>).</p>",
"polygon": [
[
49.7548828125,
630.5612335205078
],
[
287.0244140625,
630.5612335205078
],
[
287.0244140625,
700.734375
],
[
49.7548828125,
700.734375
]
],
"bbox": [
49.7548828125,
630.5612335205078,
287.0244140625,
700.734375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/7",
"block_type": "Text",
"html": "<p block-type=\"Text\">However, in many counting problems, such as those</p>",
"polygon": [
[
59.84033203125,
703.4442443847656
],
[
287.173828125,
703.4442443847656
],
[
287.173828125,
713.49609375
],
[
59.84033203125,
713.49609375
]
],
"bbox": [
59.84033203125,
703.4442443847656,
287.173828125,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/8",
"block_type": "Text",
"html": "<p block-type=\"Text\">Jonathan Ventura University of Colorado Colorado Springs [email protected]</p>",
"polygon": [
[
291.4570007324219,
163.6572265625
],
[
488.89715576171875,
163.6572265625
],
[
488.89715576171875,
202.3262939453125
],
[
291.4570007324219,
202.3262939453125
]
],
"bbox": [
291.4570007324219,
163.6572265625,
488.89715576171875,
202.3262939453125
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/9",
"block_type": "Text",
"html": "<blockquote><p block-type=\"Text\">counting cells in a microscope image, pedestrians in a crowd, or vehicles in a traffic jam, regressors trained on a single image scale are not reliable <a href=\"#page-8-4\">[18]</a>. This is due to a variety of challenges including overlap of objects and perspective effects which cause significant variance in object shape, size and appearance.</p></blockquote>",
"polygon": [
[
308.390625,
234.1092529296875
],
[
545.1151123046875,
234.1092529296875
],
[
545.1151123046875,
303.8478698730469
],
[
308.390625,
303.8478698730469
]
],
"bbox": [
308.390625,
234.1092529296875,
545.1151123046875,
303.8478698730469
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/10",
"block_type": "Text",
"html": "<blockquote><p block-type=\"Text\">The most successful recent approaches address this issue by explicitly incorporating multi-scale information in the network <a href=\"#page-8-4\">[18,</a><a href=\"#page-9-0\">28]</a>. These approaches either combine multiple networks which take input patches of different sizes <a href=\"#page-8-4\">[18]</a> or combine multiple filtering paths (\"columns\") which have different size filters <a href=\"#page-9-0\">[28]</a>.</p></blockquote>",
"polygon": [
[
308.390625,
306.861328125
],
[
545.1151733398438,
306.861328125
],
[
545.1151733398438,
376.9228210449219
],
[
308.390625,
376.9228210449219
]
],
"bbox": [
308.390625,
306.861328125,
545.1151733398438,
376.9228210449219
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/11",
"block_type": "Text",
"html": "<blockquote><p block-type=\"Text\">Following on the intuition that multiscale integration is key to achieving good counting performance, we propose to incorporate dilated filters <a href=\"#page-8-5\">[25]</a> into a multicolumn convolutional neural network design <a href=\"#page-9-0\">[28]</a>. Dilated filters exponentially increase the network's receptive field without an exponential increase in parameters, allowing for efficient use of multiscale information. Convolutional neural networks with dilated filters have proven to provide competitive performance in image segmentation where multiscale analysis is also critical <a href=\"#page-8-5\">[25,</a> <a href=\"#page-8-6\">26]</a>. By incorporating dilated filters into the multicolumn network design, we greatly increase the ability of the network to selectively aggregate multiscale information, without the need for explicit perspective maps during training and testing. We propose the \"aggregated multicolumn dilated convolution network\" or AMDCN which uses dilations to aggregate multiscale information. Our extensive experimental evaluation shows that this proposed network outperforms previous methods on many benchmark datasets.</p></blockquote>",
"polygon": [
[
308.390625,
380.14453125
],
[
545.1151123046875,
380.14453125
],
[
545.1151123046875,
605.4156646728516
],
[
308.390625,
605.4156646728516
]
],
"bbox": [
308.390625,
380.14453125,
545.1151123046875,
605.4156646728516
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/SectionHeader/12",
"block_type": "SectionHeader",
"html": "<h1>2. Related Work</h1>",
"polygon": [
[
307.1953125,
621.7747497558594
],
[
392.0625,
621.7747497558594
],
[
392.0625,
633.7299499511719
],
[
307.1953125,
633.7299499511719
]
],
"bbox": [
307.1953125,
621.7747497558594,
392.0625,
633.7299499511719
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/0/Text/13",
"block_type": "Text",
"html": "<p block-type=\"Text\">Counting using a supervised regressor to formulate a density map was first shown by <a href=\"#page-8-3\">[15]</a>. In this paper, Lempitsky et al. show that the minimal annotation of a single dot blurred by a Gaussian kernel produces a sufficient density map to train a network to count. All of the counting methods that we examine as well as the method we use in</p>",
"polygon": [
[
308.86199951171875,
643.5
],
[
545.361328125,
643.5
],
[
545.361328125,
713.4066772460938
],
[
308.86199951171875,
713.4066772460938
]
],
"bbox": [
308.86199951171875,
643.5,
545.361328125,
713.4066772460938
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/0/PageFooter/15",
"block_type": "PageFooter",
"html": "",
"polygon": [
[
294.7939453125,
733.3320770263672
],
[
300.102294921875,
733.3320770263672
],
[
300.102294921875,
743.2946739196777
],
[
294.7939453125,
743.2946739196777
]
],
"bbox": [
294.7939453125,
733.3320770263672,
300.102294921875,
743.2946739196777
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/1/Page/286",
"block_type": "Page",
"html": "<content-ref src='/page/1/FigureGroup/285'></content-ref><content-ref src='/page/1/Text/2'></content-ref><content-ref src='/page/1/Text/3'></content-ref><content-ref src='/page/1/Text/4'></content-ref><content-ref src='/page/1/Text/5'></content-ref><content-ref src='/page/1/Text/6'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/1/FigureGroup/285",
"block_type": "FigureGroup",
"html": "<content-ref src='/page/1/Figure/0'></content-ref><content-ref src='/page/1/Caption/1'></content-ref>",
"polygon": [
[
48.8583984375,
71.15625
],
[
588.0362548828125,
71.15625
],
[
588.0362548828125,
416.49609375
],
[
48.8583984375,
416.49609375
]
],
"bbox": [
48.8583984375,
71.15625,
588.0362548828125,
416.49609375
],
"children": [
{
"id": "/page/1/Figure/0",
"block_type": "Figure",
"html": "",
"polygon": [
[
48.8583984375,
71.15625
],
[
588.0362548828125,
71.15625
],
[
588.0362548828125,
339.15234375
],
[
48.8583984375,
339.15234375
]
],
"bbox": [
48.8583984375,
71.15625,
588.0362548828125,
339.15234375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {
"/page/1/Figure/0": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCALKBZ4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkDAsVBGR1HpXH+N/G6+HEj03TYo7zX7pC1vbsfkiToZpSOiA/ix4HcjB+FFtLBrPiWW7u5by+uBayXN1L96Vz5vbooHQKOAABQOztc9PooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVXv72LTtPub2c4it42kfHoBmvPNMuPH/izTDrllq9npVtLlrSyNssm9QeN7EZGfb8hWkKfMr3sgPS6K87u/Hms2Pg2zmutHaHxDd3P2OK2lRkVn/vgHnb0/GotSb4heGdMbXLnWbLVIoB5l1Yi1WMKnfa4GTj3/WqVF9Wh2Oz1fxDZaLe6ZaXSzGTUZxbw+WoIDcfe54HNa1eaeK9Tg1m++H2pW2fJudQSRQeozt4rdtNfv5vihqGhPIhsIbFJkTYMhiRnnr3odL3U153+8LHXUVymq67fWvxG0DRopFFleQTPMpQEkqpIweo6Vgvrvi3WPHOteHdJvLW0gtSjC6kgDmFcDgL0Yknv6UlSb1v0v+gWPSaK8ssNb8cyeI77we19ZyXsIEv9qtABsiIH/LMcFjkY/HrWt4Y1nxBaeNbzwtr97DqDLbC5gukhEZIyBggcd/0pyotLdd/kFjvaK8u0bWPGvi291ezsdTtdOt7G8kj+1m2WRyM/KgU8cAZJPPIrW8I+JdZOo67oniBorq90pRILiFAvmoRnoOM9O3eiVFpPVaBY7uivLNE1Lxr4x02XWdM8S6fZ/M3l6atskm0A8B2PzAmu88MX2p6joFvcazYmyvzlZYsYGQeoHYHrSnScN2FjXooorIQUUUUAFFFFABRRRQAUUUUAFFFFABXHeN/G6+HEj03TYo7zX7pC1vbsfkiToZpSOiA/ix4Hcg8b+N18OJHpumxR3mv3SFre3Y/JEnQzSkdEB/FjwO5Hm9jYtbPPc3NxJeajdP5l3eS/fmf+igcKo4A4FNI0p0+b0CxsWtnnubm4kvNRun8y7vJfvzP/AEUDhVHAHArs/hp/yG/EP/XO1/8AatcxXT/DT/kN+If+udr/AO1abNqqtCyPRqKKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMjxRYS6p4V1SxgGZp7Z0QerY4Fct4E8Y6Hb+B7OC+1G2s7mwi8m4gnkCOpXj7p5OfavQKxr3wl4e1K9+2Xmi2U9wTkyPCCW+vr+NaxnHl5ZDPOPEmv3Gu6ToPjD+zJYLDTtUJYbt5eHIHmYwMDjFdL4y8baAfBd79k1O1u5ryBoYIYZA7szjH3RyMZ712/2eH7P9n8mPyNuzy9o27fTHTFZNn4R8O6fefbLTRbGG4ByJEhUFT7en4VftIO11tsFzzy806fSbD4Z2NypWeK9Tep6qSQcfhmtOTULTRfjbdS6lPHaw3mmosMszBUYgjjJ47GvQriws7uWCW5tIJpIH3wvLGGMbeqk9D7iq+qaHpWtxLHqen292qHK+dGGK/Q9RR7ZP4l3/F3C5wF1rlhrPxp8PLp1wlzFbW9wjzRHchcxscBhwcDHT1q94T/AOSq+MvpB/KuxtdC0mx+zm10yzhNsGELJCoMe7htpxkZ7+tWIrCzt7ua6htII7mfHmzJGA8mOm4gZP40pVY2sl0t+NwucNpP/Jbte/7B0X/stC/8l1f/ALBH/s1dylhZx30l8lpAt3IoR51jAkZR0BbqRR9gs/t/2/7JB9s2eX9o8seZt/u7uuPal7VfhYLnDfC373if/sLy1FokjQ/FfxlKkTSslrCwjXq5CjgfWu+tbCzsfN+yWkFv5rmSTyYwm9j1Y4HJ96I7CzhvJryK0gS6mAEsyxgO4HTc2Mn8aHVTcnbf/gBc8ii0r4f+JrOTWoNQPhvUVZjLGl2I2jcE8lT/AOy4rr/hbqep6p4SMupTyXPl3DxwXMg+aWMYwxz15zzW3eeDvDeoXhu7vRLGW4Y5Z2hGWPqfX8a2Ioo4IkihjSONBhURQAo9AB0qqlZSjy6/PoDY+io5J4YniSSVEeVtkaswBdsE4HqcAn6A1JXOIKKKKACiiigAooooAKKKKACuO8b+N18OJHpumxR3mv3SFre3Y/JEnQzSkdEB/FjwO5DvHHjT/hG4orDToFu9dvFJtoGz5cSjgyykdEHp1Y8DuR5rY2LWzz3NzcSXmo3T+Zd3kv35n/ooHCqOAOBTSNKdPm9AsbFrZ57m5uJLzUbp/Mu7yX78z/0UDhVHAHAq5RRVHWlbRBXT/DT/AJDfiH/rna/+1a5iun+Gn/Ib8Q/9c7X/ANq0mZVvhPRqKKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsjxJ4k07wro76lqUjBAQkUMY3STyH7saL/Ex9PqTgAmjxJ4k07wro76lqUjBAQkUMY3STyH7saL/Ex9PqTgAmvH5ZdR1/WP7e17aLsAraWaNujsYz/Cp/ic/wAT9+gwBQkXCDky1pNzqmufEnw9rmtvtunupI7ezjfMVnEbeU7B/ec4BZ+5AAwAK9trxrRv+Rz8Of8AX6//AKTzV7LTY6iSdkFFFFIzCiiigAooooAKKKKAPHPH/wDyV60/7AJ/9H1Vq14//wCSvWn/AGAT/wCj6q1SOqj8IUUUUzUK6f4af8hvxD/1ztf/AGrXMV0/w0/5DfiH/rna/wDtWkzKt8J6NRRRUnKFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVC91bxNtkniRvRnANAE1FFFABRRRQAUUUUAFVdS1Oy0fTp9Q1G6itbSBd0k0rYVR0H4kkADuSBTdV1Wx0TS7jUtSuY7azt03yyueFH8yScAAckkAcmvC/FWq33jeO41LU4ZLbSreKR9O0x+oO04mmHQyEdB0QHA5JJCoxctj36ORJYkkjYMjgMrDoQehp1VNL/5BFl/1wT/0EVboJCiiigAooooAKKKKACiiigAooooAKqanqdlo2m3Go6jcpbWdum+WVzwo/qewA5JIAo1PU7LRtNuNR1G5jtrO3TfLLIeFH9T2AHJJAFeL6vq97431GPUL+KS20i3bfYac/UntNMO7+i9FB9cmgqMXJ2R7XYX1vqenWt/ZyeZbXUSTQvtI3IwBU4PI4I61YrA8C/8AJPfDX/YKtf8A0Utb9BIUUUUAFFFFABRRRQAUUUUAFZHiTxJp3hXR31LUpGCAhIoYxuknkP3Y0X+Jj6fUnABNHiTxJp3hXR31LUpGCAhIoYxuknkP3Y0X+Jj6fUnABNePyy6jr+sf29r20XYBW0s0bdHYxn+FT/E5/ifv0GAKEi4QcmEsuo6/rH9va9tF2AVtLNG3R2MZ/hU/xOf4n79BgCrVFFUdcYqKsixo3/I5+HP+v1//AEnmr2WvGtG/5HPw5/1+v/6TzV7LSZzVviCiiikZBRRRQAUUUUAFFFFAHjnj/wD5K9af9gE/+j6q1a8f/wDJXrT/ALAJ/wDR9VapHVR+EKKKKZqFdP8ADT/kN+If+udr/wC1a5iun+Gn/Ib8Q/8AXO1/9q0mZVvhPRqKKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4r4r69qHhr4dajqWlzeReKY40l2glNzhSRnjOCa7WvOPjr/ySfUv+usH/AKMWgCKP4M6ZfIsmv+IfEGsTMMv594QhPso5A9s1btvgn4BtZEkXRnaRGDKzXk3BHTo2K79P9Wv0FOoAKKKKACiiigAqnquq2OiaXcalqVzHbWdum+WVzwo/mSTgADkkgDk0arqtjoml3Gpalcx21nbpvllc8KP5kk4AA5JIA5NeL6rqt9431SLUtShkttKt336dpj9Qe00w6GQjoOiA4HJJIVGLk7INV1W+8b6pFqWpQyW2lW779O0x+oPaaYdDIR0HRAcDkkmPVf8AkD3v/XvJ/wCgmrdVNV/5A97/ANe8n/oJqjrUVFWR7bpf/IIsv+uCf+girdVNL/5BFl/1wT/0EVbqTiCmySJFG0kjqiICzMxwAB1JNEkkcMTyyuqRopZnY4CgdST2Fec6pqknjGUKoaPw8jZRCMG+I6Mw7Rei/wAXU8YBqMXJ2QHZ/wDCT+H/APoO6Z/4Fx/40f8ACT+H/wDoO6Z/4Fx/41xn9n2X/Ppb/wDfsf4Uv9n2X/Ppb/8Afsf4Vr7DzHY7L/hJ/D//AEHdM/8AAuP/ABo/4Sfw/wD9B3TP/AuP/GuN/s+y/wCfS3/79j/Cj+z7L/n0t/8Av2P8KPYeYWOy/wCEn8P/APQd0z/wLj/xq5ZahZalE0tjeW91GrbGeCUOA2AcEg9cEfnXj+u31tFM2maZa2xviAZZjEpW2U9zxyx7L+J469L8IbSKy0jXbeEHYuqZyTkkm3gJJPqSSfxqJ0+VXA9Eqpqep2WjabcajqNzHbWdum+WWQ8KP6nsAOSSAKNT1Oy0bTbjUdRuY7azt03yyyHhR/U9gBySQBXjGr6ve+N9Sj1DUIpLbSLd99hpz9Se00w7v6L0UH1yazHGLk7INX1e98b6lHqGoRSW2kW777DTn6k9pph3f0XooPrk1KehooPQ1R1xioqyPTvAv/JPfDX/AGCrX/0Utb9YHgX/AJJ74a/7BVr/AOilrfqTiCori4hs7aW5uZUhgiUvJJI2FVRySSegouLiGztpbm5lSGCJS8kkjYVVHJJJ6CvOr+/m8XXKTTI8OiRMHtrZxhrlhyJZB2XuqH6nnAFRi5OyA6QfEHwyQCL+Ug9CLOb/AOIo/wCFgeGv+f6b/wAA5/8A4isaitvYLuOxs/8ACwPDX/P9N/4Bz/8AxFH/AAsDw1/z/Tf+Ac//AMRWNRR7BdwsbP8AwsDw1/z/AE3/AIBz/wDxFX9E8T6N4ja6XSb0XDWjhJ18tkaMkZGQwB5/oa8y13XZWnfStKkxcDi4uQMi3B7D1cjoO3U9gdj4T20Vpea/DCuFBtzyckkhyST3JPJNROnyq6AyviGxl+K2mxSHfHDozyxK3IR2m2lh6EgAZ9Kp1b8f/wDJW7P/ALAR/wDR9VKhHTR+EKKKKZqWNG/5HPw5/wBfr/8ApPNXsteNaN/yOfhz/r9f/wBJ5q9lqWctb4gpskiRRtJI6pGgLMzHAUDqSaJJEijaSR1SNAWZmOAoHUk151quqyeMJdibk8PI2VUjBvyOjMO0XoP4up4wC4xcnZGRrj4hW0uXs9D1i8tiT5dxEkKpKP7yh5VbB7EgZ60v/Ce/9Sxrn/kt/wDHqz8YGBRW/sYjsaH/AAnv/Usa5/5Lf/HqP+E9/wCpY1z/AMlv/j1Z9FHsYhY0P+E9/wCpY1z/AMlv/j1Lo3xBsNY8Tf2ANN1G0vfJMx+0LEVAGOCUkbB5zg9q43XddkhlOmaYVa+IBklIytsp7n1Y9l/E8dY/AtrHaeOdORNzE29yzu5yzsdmWY9yaidNJXQWF8f/APJXrT/sAn/0fVWrXj//AJK9af8AYBP/AKPqrWaOmj8IUUUUzUK6f4af8hvxD/1ztf8A2rXMV0/w0/5DfiH/AK52v/tWkzKt8J6NRRRUnKFc/L458MQzSRPrVrvjYowVi2CDgjIGOtYWv6/Lr882k6TM0enRsY7y+jbBlI4MURH5M46dBzkrDBBFbQRwQRrHFGoVEQYCgdABWsKTkrsdjoP+E98Lf9Bq3/8AHv8ACj/hPfC3/Qat/wDx7/CsOir9h5hY3P8AhPfC3/Qat/8Ax7/Cj/hPfC3/AEGrf/x7/CsOsfXNcXS1S3t0E+oTA+TDngDu7nso/XoKPYruFjv9M8V6FrN81lp2qW9xdLGZTCh+YJkDdg9skCtivHvh9btF8RY5p5TPdzaZdNNMw5c+Zb4AHZR2HavYaxlHldhBRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5x8df8Akk+pf9dYP/Ri16PXnHx1/wCST6l/11g/9GLQB6Kn+rX6CnU1P9Wv0FOoAKKKKACiiigDyr4tkzeJfB9nIS1szXc7Qn7rSIibGI7ldzY9Mmsetf4rf8jj4N/653//AKDFWRVI6qPwhVTVf+QPe/8AXvJ/6Cat1U1X/kD3v/XvJ/6CaZo9j23S/wDkEWX/AFwT/wBBFWZJI4YnlldUjRSzOxwFA6knsKraX/yCLL/rgn/oIrzfxprGq6p4kudEj08TaRYGPzo/tAT7VIyK4D8fcXcPl7nrxxUxi5OyOEt6pqknjGUKoaPw8jZRCMG+I6Mw7Rei/wAXU8YBs1hf2vq//QDT/wADF/8AiaP7Y1j/AKAaf+Bi/wDxNdkYqKsijdorC/tjWP8AoBp/4GL/APE0f2xrH/QDT/wMX/4mqA3a53XddkimbTNMZTfEAyzEZW2U9z6sey/ieOtTVvEOswx29umnR2kl3L5KXBnEnlnYzk7ccnCHHbOM1StbWO0h8uPccks7scs7HqzHuT60twC1tY7SHy49xySzuxyzserMe5PrXefC3/jy1/8A7Cg/9JoK4mu2+Fv/AB5a/wD9hQf+k0FZVvhExvxViSew8PxSoHjOrAlWGQSLedh+RAP4VyNdj8UP+PXw9/2FD/6TT1x1YI6KPwhQehooPQ0zY9O8C/8AJPfDX/YKtf8A0UtbVxcQ2dtLc3MqQwRKXkkkbCqo5JJPQVi+Bf8Aknvhr/sFWv8A6KWuO8d3Gr6l4sXSoJLQabZW8Ny1vMrETSuz4LYIyF2AhemTk5wMTGLk7I4Ca/v5vF1yk0yPDokTB7a2cYa5YciWQdl7qh+p5wBbrA8/xF/f0v8A79yf/FUef4i/v6X/AN+5P/iq7Ix5VZIo36KwPP8AEX9/S/8Av3J/8VR5/iL+/pf/AH7k/wDiqrXsBv1zWu67K076VpUmLgcXFyBkW4PYerkdB26nsDT1vUvEdrZxjztPjE8yQGSGN96BjglckjPpmq9tbRWkCwwrhRk8nJJPJJPck8k0t9AC2torSBYYVwoyeTkknkknuSeSa7L4Yf8AIT8Q/wDbt/6C9clXW/DD/kJ+If8At2/9Bes63wiZh+P/APkrdn/2Aj/6PqpVvx//AMlbs/8AsBH/ANH1UrnR00fhCiiimaljRv8Akc/Dn/X6/wD6TzV7HJIkUbSSOqRoCzMxwFA6kmvHNG/5HPw5/wBfr/8ApPNXUfE1Li9i0jSkvJba3up3M4jCnzAibgpDAgrnGRjnFK13Y5avxFXVdVk8YS7E3J4eRsqpGDfkdGYdovQfxdTxgGxjAwK537DqgGB4hvf+/Fv/APG6X7Fqn/QxXv8A34g/+N11xhyqyRFjoaK577Fqn/QxXv8A34g/+N0fYtU/6GK9/wC/EH/xuqs+wHQ1z2u67JDKdM0wq18QDJKRlbZT3Pqx7L+J461NTi1i00m8uY/EV55kMDyLmCDGQpI/5Z1m6fAkFlHtyzOPMkdjlnY8lmPcmk77ASWtrHaRbE3MSSzu5yzserMe5Nbfg/8A5H7Tv+va4/8AZKyq1fB//I/ad/17XH/slRU+BiZF4/8A+SvWn/YBP/o+qtWvH/8AyV60/wCwCf8A0fVWuZHTR+EKKKKZqFdP8NP+Q34h/wCudr/7VrlALm6vYdO06D7RqE+fLjJwqqOruf4UHc/QDJIFeqeFvDNv4a0941kNxeTkPdXTDBlbHGB/Co6Be3uSSZZhWkrWN2uC1/X5dfnm0nSZmj06NjHeX0bYMpHBiiI/JnHToOclXfEjUdYQabo+lPDEt+JWuZXkZH8tNmUUqCRu34J6gA4wTkcxBLrttBHBBZ6RHFGoVESWQBQOgA21rTp82rMEb8EEVtBHBBGscUahURBgKB0AFSVgfbPEX/Pvpf8A3+k/+Jo+2eIv+ffS/wDv9J/8TXSM36KwPtniL/n30v8A7/Sf/E1V1PWPEOnaVeXzWumMttA8xAlkyQqk/wB32oA0dc1xdLVLe3QT6hMD5MOeAO7ueyj9egrm7e3aJpJ55TPdzHdNOw5c9gB2Udh2ot7domknnlM93Md007Dlz2AHZR2HarFLzYGz4G/5KFb/APYLuv8A0bb161Xkvgb/AJKFb/8AYLuv/RtvXrVctX42SwooorMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOPjr/wAkn1L/AK6wf+jFr0evOPjr/wAkn1L/AK6wf+jFoA9FT/Vr9BTqan+rX6CnUAFFFFABRRRQB5T8Vv8AkcfBv/XO/wD/AEGKsitf4rf8jj4N/wCud/8A+gxVkVSOqj8IVU1X/kD3v/XvJ/6Cat1S1h1j0W9Z2CjyHGT6kECmaPY9v0v/AJBFl/1wT/0EV53qH/I6+If+u0P/AKIjr0XTVZNKs1ZSrLAgIIwQdorzrUP+R18Q/wDXaH/0RHV0PjOJBRRRXaUFFFFAGB4m/wBdon/X83/pPNUVS+Jv9don/X83/pPNUVZvdiCu2+Fv/Hlr/wD2FB/6TQVxNdt8Lf8Ajy1//sKD/wBJoKxrfCJi/FD/AI9fD3/YUP8A6TT1x1dj8UP+PXw9/wBhQ/8ApNPXHVgjoo/CFB6Gio7ieK2t5JpnCRoMszdAKZsepeBf+Se+Gv8AsFWv/opa5XX/APkf9R/68LX/ANCmrrvBlvNaeBvD9tcRPFPFpttHJG4wyMIlBBHYg1yOv/8AI/6j/wBeFr/6FNVUfjRwohoooruKCiiigDD8U/8AHlZ/9fsX86r1Y8U/8eVn/wBfsX86r1m9xBXW/DD/AJCfiH/t2/8AQXrkq634Yf8AIT8Q/wDbt/6C9ZVvhEzD8f8A/JW7P/sBH/0fVSrfj/8A5K3Z/wDYCP8A6PqpXOjpo/CFFFMRLu+v4tM0yET38wyFbhIk7yOeyj8yeBzTNG0ldlzQVafxzoMUKtI8M8lxKFGfLj8mRdzeg3Mo9ya6zx9/yFPD3/XWf/0XW74Z8M2nhqwaKJjPdTEPdXTjDzP/AEUdAo4A/EnC8ff8hTw9/wBdZ/8A0XRD40ck5c0rmRRRRXoAFFFFAGfrv/Ivan/16S/+gGsa1/49If8Armv8q2dd/wCRe1P/AK9Jf/QDWNa/8ekP/XNf5VEtxEtavg//AJH7Tv8Ar2uP/ZKyq1fB/wDyP2nf9e1x/wCyVnV+BiZF4/8A+SvWn/YBP/o+qtWvH/8AyV60/wCwCf8A0fVWuVHTR+EKjAubq9h07ToPtGoT58uMnCqo6u5/hQdz9AMkgUAXN1ew6dp0H2jUJ8+XGThVUdXc/wAKDufoBkkCvU/C/he28NWTqr/aL6fDXV2y4aVh0AH8Kjsvb3JJI2FSpy6LcPC/he28NWTqr/aL6fDXV2y4aVh0AH8Kjsvb3JJO9RRUnKcJ47/5GPQP+uN3/wC0ay61PHf/ACMegf8AXG7/APaNZddtD4CkFFFFbDCsnxT/AMijrX/XjP8A+gGtasnxT/yKOtf9eM//AKAaUtgKNFFFQI1PBlzFB8RbFJG2mawuYk46sWhfH5Rsfwr1+vne7vpdM8VaHqCf6q0Zp5j6IJIlP/oePxr6IByMiuSr8RU4pRUl1CiiiszMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj46/wDJJ9S/66wf+jFr0evOPjr/AMkn1L/rrB/6MWgD0VP9Wv0FOpqf6tfoKdQAUUUUAFFFFAHlPxW/5HHwb/1zv/8A0GKsitf4rf8AI4+Df+ud/wD+gxViTzxWsDzzuEjQZZj2qkdVH4QnnitYHnncJGgyzHtXW+DvB0tzPDrmuQFChD2VhIP9V6SSD+/6L/D/AL3Q8HeDpbmeHXNcgKFCHsrCQf6r0kkH9/0X+H/e6eiUmzOpUvogrzDUP+R18Q/9dof/AERHXp9eYah/yOviH/rtD/6IjrWh8ZkgooortKCiiigDA8Tf67RP+v5v/Seaoql8Tf67RP8Ar+b/ANJ5qirN7sQV23wt/wCPLX/+woP/AEmgria7b4W/8eWv/wDYUH/pNBWNb4RMX4of8evh7/sKH/0mnrjq7H4of8evh7/sKH/0mnrip54raB5pnVIkGWZugFYI6KPwhPPFbQPNM6pEgyzN0ArrPB/g+W7nh1zXIGQIQ9lYSDmM9pZB/f8ARf4ep+b7p4P8Hy3c8Oua5AyBCHsrCQcxntLIP7/ov8PU/N930Wk2RUqX0QV5tr//ACP+o/8AXha/+hTV6TXm2v8A/I/6j/14Wv8A6FNWlH40ZIhoooruKCiiigDD8U/8eVn/ANfsX86r1Y8U/wDHlZ/9fsX86r1m9xBXW/DD/kJ+If8At2/9BeuSrrfhh/yE/EP/AG7f+gvWVb4RMw/H/wDyVuz/AOwEf/R9VKt+P/8Akrdn/wBgI/8Ao+qKJd31/FpmmQie/mGQrcJEneRz2UfmTwOa50dNJpQuwRLu+v4tM0yET38wyFbhIk7yOeyj8yeBzXqvhnwzaeGrBoomM91MQ91dOMPM/wDRR0CjgD8STwz4ZtPDVg0UTGe6mIe6unGHmf8Aoo6BRwB+JO3SbMZzcmFcP4+/5Cnh7/rrP/6LruK4fx9/yFPD3/XWf/0XVU/iRmZFFFFegWFFFFAGfrv/ACL2p/8AXpL/AOgGsa1/49If+ua/yrZ13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5VEtxEtavg/wD5H7Tv+va4/wDZKyq1fB//ACP2nf8AXtcf+yVnV+BiZF4//wCSvWn/AGAT/wCj6ogXN1ew6dp0H2jUJ8+XGThVUdXc/wAKDufoBkkCr3j23v7v4xWFtpto1xdTaIUQHhE/fklnbsoHU/QDJIFei+F/C9t4asnVX+0X0+Gurtlw0rDoAP4VHZe3uSSeS5rGpyxstw8L+F7bw1ZOqv8AaL6fDXV2y4aVh0AH8Kjsvb3JJO9RRSMQooooA4Tx3/yMegf9cbv/ANo1l1qeO/8AkY9A/wCuN3/7RrLrtofAUgooorYYVk+Kf+RR1r/rxn/9ANa1ZPin/kUda/68Z/8A0A0pbAUaKKKgQyDTP7X1G9sgu530O8ZB6ustuy/qBXrHgvU/7X8GaTeFtztbqjn1Zflb9VNcH4H/AOShW/8A2C7r/wBG29dB8OP+Je+v+Hm4/s7UGMQ9In5X+RP41y1fiZotabXbX+vwO6ooorIxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK84+Ov/JJ9S/66wf+jFr0evOPjr/ySfUv+usH/oxaAPRU/wBWv0FOpqf6tfoKdQAUUUUAFFFFAHkvxdnitfFXhCeZwkaRX5Zj2+WKtbwd4OluZ4dc1yAoUIeysJB/qvSSQf3/AEX+H/e6dhqPhzSdX1XTNTv7NZ7vTGd7R3Y4jZgMnbnBPyjGQcEZGDWpQVzPl5QooooJCvMNQ/5HXxD/ANdof/REden15hqH/I6+If8ArtD/AOiI62ofGNBRRRXaUFFFFAGB4m/12if9fzf+k81RVL4m/wBdon/X83/pPNUXSs3uxB0ruPhZG50bVbvYwt7vUDLbuRgSoIYk3D1G5GAPfHpXOeFvCz+LJFu7tWTQUPA6G+I7D/pl6n+LoOOvriIkUaxxoqIoCqqjAAHQAVzVZp6ITOB+K88Vtp2gzTOqRJqZLM3QD7NPUXg/wfLdzw65rkDIEIeysJBzGe0sg/v+i/w9T833e5vtKsdTe0a9to5zaTi5g3jISQKVDY9QGOM/XqBVysR8z5bBRRRQSFeba/8A8j/qP/Xha/8AoU1ek15tr/8AyP8AqP8A14Wv/oU1a0fjQ0Q0UUV3FBRRRQBh+Kf+PKz/AOv2L+dV6seKf+PKz/6/Yv51WZgqlmICgZJPQVm9xAzBVLMQFAySegrtPhfZ3Hk6nqzwtHaXzRfZmfgyKgILgf3SW4PfGehBON4T8Jt4nePUtTjK6IpDQQMMG9PZmH/PL0H8XU/L971gAAAAYA6AVzVZ30QmeQ+PLLUr74v6db6ZamaebRWRWbIjj/f5LueygY6c8gdSK9E8M+GbTw1YNFExnupiHurpxh5n/oo6BRwB+JO3SMyohd2CqoySTgAViF3awtFedz/GrwhDdSIr6hPaxPskvobRmgU/73X8hXeWN7a6lYw3tlOk9tOgeOVDkMp7igRYrh/H3/IU8Pf9dZ//AEXXcVw/j7/kKeHv+us//ourp/EgMiiiivQLCiiigDP13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5Vs67/AMi9qf8A16S/+gGsW1/484f+ua/yqJbiJq6L4faXdahria+F8vTYIpIYZGHNwzEZK/7A29e56cDNUfC/hd/FsouroMmgo30N6R2HpH6n+LoOMk+uxxpDGkcaKkaAKqqMBQOgArmq1L+6hMdjnPeiisLxP4v0jwjbW82qTMGuZlhhijAZ3YnHAyOB3NYCN2ikZlRSzMFVRkknAArz26+NPhC2upI1e/uLaJ9kt7b2jPAh92/wBoA9DoqCyvbbUrGG9s50ntp0DxyochlPQip6AOE8d/8AIx6B/wBcbv8A9o1l1qeO/wDkY9A/643f/tGsuu2h8BSCiiithhWT4p/5FHWv+vGf/wBANa1ZPin/AJFHWv8Arxn/APQDSlsBRooq1oeh3fiu/e1tXeDT4W23l6vUH/nnH6v6n+H64FZykoq7Eafw9t5rvxlJqEMbNZ2lnNbSz/w+a7xMEHqQEOcdMj1rcP8AxKPjIp6Ra1p+PrLH/wDYr+tdjp+n2mlWENjYwJBbQrtjjQcAf1PcnvXHfEkfYF0HxAvXTdQQyH0ifhv5AfjXI5c0rmlHWXL30O6ooByMjpRUGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnHx1/5JPqX/XWD/wBGLXo9ecfHX/kk+pf9dYP/AEYtAHoqf6tfoKdTU/1a/QU6gAooooAKKRXViwVgSpwwB6HGcH8CPzpaACvHPi18RtT0130rwxKySWbxnUb1ACIdxwsYJ43HqfYfWuw+J/jJ/BXg+S+gXN3PILe3YjKxuwPzH2ABOK8T8Q+LPBqfC/8AsDSL+4u9Umu47q7uJbdlM8m7LsSf0FAH05CxaCNickqCT+FPrD8J+JtM8WaEmo6TK8lsrGEs6FDuUDPB+tblABXmGof8jr4h/wCu0P8A6Ijr0+uS1TwN9v1q71KDW720a7KNJFHHEy5VQuRuUnoo71pTkoyuxo52itn/AIV/cf8AQz6h/wB+IP8A4ij/AIV/cf8AQz6h/wB+IP8A4iuj6xEdzGorZ/4V/cf9DPqH/fiD/wCIo/4V/cf9DPqH/fiD/wCIo+sRC5w/ifibRf8Ar+b/ANJ5q0PC3hZ/Fki3d2rJoKHgdDfEdh/0y9T/ABdBx16KX4YWl9cWrarrF9fW9vL5v2dkjjVztZcMUUEjDEEZ5rukRIo1jjRURQFVVGAAOgArGpVvsJsERIo1jjRURQFVVGAAOgAp1FFYiCs7XdbsfDmi3Wq6jKI7a3Tcx7seyj1JPArRrxLx/wCIrt/iRBa6n4c1fUNB0nbLFDZ25dLicgEM56ELnAHqKAJPAGseItU+MN7NrrywC50v7TDY7ztgjZ12Ar03Y5P1r2mvnqw+Ihb4yz61/wAIzrI8/T0tfshg/ep8w+cj+7719C0AFeba/wD8j/qP/Xha/wDoU1ek1z+reDdJ1nUjqFz9sS5aJYma3u5IgyqWIyFIBxuP51dOXLK4I5Ciuj/4V3on/PfVv/BlN/8AFUf8K70T/nvq3/gym/8Aiq6PrC7FXOcoro/+Fd6J/wA99W/8GU3/AMVR/wAK70T/AJ76t/4Mpv8A4qj6wuwXPP8AxUwWwtGYgKLyIknoOa0/CfhNvE7x6lqcZXRFIaCBhg3p7Mw/55eg/i6n5fvdVJ8M/Dc7Rfa4727jjkWQQ3N9LJGzKcjcpbDD2PFdcAAAAMAdAKyqVebYTYAAAADAHQCloorEQVl+JLB9U8MapYRzrA9xayRCVjgISpGSfStSuS+J1rf3vw31yDTQ7XLW/Cp95lBBYD/gINAHlWg/FDRfD3w0l8N3WkTT3dpHJaMbdUktZmORuMgOMHPNenfCnSJtF+HGlWs1zDcOytLuhkEiAMxYKGHBxntWV4R8Y+BoPhrZRPqWm29tDZiO5tJXUPu24cFDyxJz2Oc0z4HQXMXgi4leOSKxnv5ZbGOTqsJxjHtnNAHplcP4+/5Cnh7/AK6z/wDouu4qlqWjaXrUKQ6rptnfRI25EuoFlCnpkBgcGnF2dwPPaK6//hBPB/8A0Kmh/wDgvi/+Jo/4QTwf/wBCpof/AIL4v/ia6PrHkO5yFFdf/wAIJ4P/AOhU0P8A8F8X/wATR/wgng//AKFTQ/8AwXxf/E0fWPILnAa9x4e1P/r0l/8AQDUXg3wvJ4shgurtWj0FFHsb0jsPSP1P8XQcZJ9E/wCEE8H/APQqaH/4L4v/AImt2KKOCFIYY1jijUKiIMBQOAAB0FROs5bBcWONIY0jjRUjQBVVRgKB0AFOoorEQV4F8S/A7aRY2Wv6tq9zq2s3Gqwx+dJ8scMZJOxEHAHA/wDrV77XmPxw/wCRV0n/ALC9v/7NQBp/GLUpdL+GGrSQOUeYJBuHYOwB/TNcrYeNY9M8FxWml+A9Sv8AwtDbeVNertQSrjDuqEZYE5OePwrsfivolxr/AMN9Vs7SNpLhVWaNFGSxRgxA98A1naB8R/CMfw6tbmXVLOD7NZLFLZtIBKrquCgTqckcYHNAHQeAY9Cj8GWH/CNySPpTBnhErlmXJJKnPQg54rpa87+Cmn3Vh8OYGuYmiF1cS3MUbDBWNiNv54z+NeiUAcJ47/5GPQP+uN3/AO0ay67XXvDFj4hktZbqW6hltd4je3mKHDY3A+v3R+VZX/Cu9N/6Cesf+Bf/ANat6dVRjZjTOforoP8AhXem/wDQT1j/AMC//rUf8K703/oJ6x/4F/8A1q0+sR7Duc/WT4p/5FHWv+vGf/0A123/AArvTf8AoJ6x/wCBf/1qjn+GmkXVvLbz3+ryQyoUdGu+GUjBB49KTxEWtgucToeh3fiu/e1tXeDT4W23l6vUH/nnH6v6n+H64Fewafp9ppVhDY2MCQW0K7Y40HAH9T3J70afp9ppVhDY2MCQW0K7Y40HAH9T3J71ZrnnNyd2SFYfjLTP7X8HarZBdzvbsyD1dfmX9QK3KKkcXytNGD4K1P8AtfwZpN4W3O1uqOfVl+Vv1U1vVwvw4/4l7+IPDzcf2dqDGIekT8r/ACJ/Gu6pvcuqrTaQUUUUjMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmTOY4JHHVVJH5U+mSoZIXQHBZSM0AedeEPiHdXvwu1DxXraRNJZyTApAuwMFxtHU8knFZGnWvxc8S6fFr0PiLTtKS4XzrbTjbKyhDyoZipPI9z+FZUXgX4i+HvCGoeF7W00PV9JvPMJCzNHMpbuC21ewPeu48P6n4p0b4Xxy6l4ekm1qxQW6WMUgLTBSFVsjIHHJxnpQBc+H/i288S2F7bavaLa61pc5tr2JPuluzL7Hn8q7CuG+G/h7V9Mi1bWfECRxatrVz9olgjORCoGFXPrya7mgArzj46/8kn1L/rrB/wCjFr0evOPjr/ySfUv+usH/AKMWgD0VP9Wv0FOpqf6tfoKdQAVg+L/E9v4U0CW/mw8x+S3iJ/1kh6D6Dqfat6vHfjB4e1O5ubbVW1CKW3aRLW1s9pVlZvTqCSRknjoPSmldm1CEZ1EpPQ3fg9qdzqmgapNeTNNcvqDSO7dSWRP8K9Frzn4T+H9Y8OQ6vaatZtblpI3jO4Mr8MDggkdh+dejUPcMRb2r5diOWCKdds0SSKDnDqCP1rjviJ4Jk8V+FG0zSo7G3ujPHJ5kq7F2qckZVSf0rtaKRiQ2tvHa26RRxogAGQgwM1NRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzEPg/yfiNc+Lvt2fOshafZfJ6YIO7fu9umPxrp6KKACiiigAooooAKKKKACiiigAooooAKKKKAOduPAXhK71A39x4c0yS5LbmdrdfmPqRjBP1roERY0VEUKijCqowAPQU6igAooooAKKKKACiiigAooooAKKKKACqt9pthqkSRahZW13GjiRUuIlkCsOjAEHBHrVqigArn7jwN4UutS/tGfw9psl2W3GVrdcs3qRjBPua6CigBAAoAAAA4AFLXLeM/GcPhe2jt7eIXes3QP2SzBx9ZHP8KDue/Qe3N/Cxbxtb8S3Go3sl5ezi1kmlY4Xd+94VeiqBgADsBQOztc9NooooEFFFFABRRRQAUUUUAFFFFAHCn/iUfGRT0i1rT8fWWP8A+xX9a7quF+JI+wLoXiBeum6ghkPpE/DfyA/Gu6ByMjpTZrU1jGXy+4KKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzPjXT/Et5p9tceFdRjtdQtJfN8mYZjuVxgo3+fy61wDfG68njTQ7Tw5L/AMJg0xtjaO48hHH8W7PI9v1713fjHR9W8VabbWOia6NOtpJiL24gOXaLH3UI6EnHcf0rkr/wX8KbTS18NXF/ptnfI2VuGvEW7WT+8WJzn2PHtQB1/gjRtf0rT7mfxLq39oaleSiVwgxHAMYCJ7D2A/rVzxbrepeH9Da/0vQp9auFkVTawPtbaerdCTjjgA9fTJql4H0zxDo+m3FjruqpqsUUg+w3Y++8OON/uD9fqa6mgDyCX4r+OCv7r4V6qh9XaRv5RCuJ1zxzr3jqePwz4tFr4T0q4lQu89nN5jkMCFy3A57naPU19K15v8dgD8KNRJAJE0BHt+8WgD0cDAAHQUtNT/Vr9BTqACuE8Sf8Tj4leG9HHMVkr6jOPccJ/wCPD9a7uuE8Hf8AE28a+KdfPMazLp9u3bbGPmx9SFP400a0tLy7L89Du6KKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVW81Kx05rdb27gtzczLBAJZAvmSN0Rc9SfSrVABRRRQAUUUUAFFFFABRRRQAUUUUAFct4z8Zw+F7aO3t4hd6zdA/ZLMHH1kc/woO579B7HjPxnD4Xto7e3iF3rN0D9kswcfWRz/Cg7nv0Ht5ha2swuZ9Q1C4N3qd0d1xcsMZ9FUfwoOgAppGkIOTC1tZhcz6hqFwbvU7o7ri5YYz6Ko/hQdABXZfDT/kN+If8Arna/+1a5iun+Gn/Ib8Q/9c7X/wBq02bVUlCyPRqKKKk5QooooAKKKKACiiigAooooAw/GWmf2v4O1WyC7ne3ZkHq6/Mv6gU3wVqf9r+DNJvC252t1Rz6svyt+qmt6uF+HH/EvfxB4ebj+ztQYxD0iflf5E/jT6Gq1ptdtf0/yO6ooopGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXP8Ax6Tf7jfyqWkZQylWGQRgigDw3wFqN3p37P2u3Omvi+ge5ZNh+ZOnzfgMn8K6Twl8KPBlz4NsJbzTItQuLy2Saa7kdi7s4ySCDx17Vavvgj4KupGltrS706Vs5ezunU8+zbh+ladj4AGkeA5vC2l65qNursTHeF8yxAsCQuMYGARxjqaAMb4StLYT+JvDa3Ul1p+j3/lWcjtuKowJKZ9iP516XWF4S8Jab4N0UabpokZSxklmlbc8znqzGt2gArzj46/8kn1L/rrB/wCjFr0evOPjr/ySfUv+usH/AKMWgD0VP9Wv0FOpqf6tfoKdQBna/qY0bw/qGokjNvA7rnuwHyj8TgVj/DrTDpngbTlkB864Q3MhPUlzuGffBA/CqHxNke60rTdAiYiXV76OA47RggsfwO2u2jjSKJI41CogCqB2Ap9DV6Ul5v8AIdRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRmVELuwVVGSScACgBaKwP+E58I/9DTon/gwi/wDiqP8AhOfCP/Q06J/4MIv/AIqgDforA/4Tnwj/ANDTon/gwi/+Ko/4Tnwj/wBDTon/AIMIv/iqAN+isD/hOfCP/Q06J/4MIv8A4qtHTda0rWUkfS9Tsr5YiBIbWdZQhPQHaTigC9RRRQAVjeJvE2neFNIfUNQdiNwjhgjG6SeQ/dRF7sf/AK54o8TeJtO8KaQ+oag7EbhHDBGN0k8h+6iL3Y//AFzxXkDvqOu6ude14qb3aVtrVG3R2MZ/hX1c/wAT9+g4oSLhByYJLqWueMtG13XWH21tRgS3tUbMdlGXHyL6seNz9+g4Fe8V4jD/AMhvRP8AsJ2//oYr26mx1YqLsgooopGYUVy7fEDQfMdYWv7lFYr5tvYTSxsQcHa6qQwz3BxSf8J/o3/PDVv/AAV3H/xFOzA6miuW/wCE/wBG/wCeGrf+Cu4/+Io/4T/Rv+eGrf8AgruP/iKLMDqaK5b/AIT/AEb/AJ4at/4K7j/4iptL8c6Hq+tjRraW5TUDCZxDPaSxEoDgn5lFFmB0dct4z8Zw+F7aO3t4hd6zdA/ZLMHH1kc/woO579B7dTXgsJa58R+I76dmluW1a5g8xzkiOOQqiD0UAdKEXCPM7DrW1mFzPqGoXBu9TujuuLlhjPoqj+FB0AFW6KKo60klZBXT/DT/AJDfiH/rna/+1a5iun+Gn/Ib8Q/9c7X/ANq0mZ1vhPRqKKKk5QoorMm8RaHbTPDPrOnxSodro90isp9CCeKANOisn/hKfD3/AEHtL/8AAyP/ABo/4Snw9/0HtL/8DI/8aANaisn/AISnw9/0HtL/APAyP/Gj/hKfD3/Qe0v/AMDI/wDGgDWoqjZ63pOozmCx1Oyupgu8xwXCOwXIGcA5xkjn3q9QAVwp/wCJR8ZFPSLWtPx9ZY//ALFf1ruq4X4kj7AuheIF66ZqCGQ+kT8N/ID8aaNaOsuXvod1RQDkZHSikZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5x8df8Akk+pf9dYP/Ri16PXnHx1/wCST6l/11g/9GLQB6Kn+rX6CnU1P9Wv0FKSFBJIAHJJoA4Wb/ic/GGCP70GiWJkPoJZOP8A0Eg/hXd1wvw2B1BNc8RuDnVL9zGT/wA8k4X+ZH4V3VNmtbSXL20/r5hRRRSMgooooAKrtf2iX8dg91Ct5IhkSAuN7IDgsF64GRzXP+MvGVv4WtI4YYxd6vdAi0swcFj3dj/Cg7n8BzXB+CLe4b4kW2o6jcm71O6tbgzzkYHGzCIP4UHYUFKLaueyUUUdBk0Eh0GTXnmta2/iuR7GwkZNCQlZ7hDg3pHVEP8Azy9W/i6DjJJretv4rkksLCRk0JCVnuEODekdUQ/88uxb+LoOMkuREjjWONVVFACqowAB2Fb06d9WNIyf+ET8O/8AQC03/wABU/wo/wCET8O/9ALTf/AVP8K2KK3shmP/AMIn4d/6AWm/+Aqf4Uf8In4d/wCgFpv/AICp/hWxWHr2vGwZbGxVZdSlXKq33YV/vv7eg6k/iQNIDH16x8PWDLY2OgaXLqUq5VWtU2wr/ffjp6DqT+JHWfByxi03RNbtYfuJqpPQDJNvAScDgck8DgVxlrai2V2aRpZ5W3zTP96RvU/0HQDgV3vwt/48tf8A+woP/SaCsaq924md7RRRXOIKw7zxbpVn4q07w00rSanfB2WOMAiJVRny5z8oIUgdz9OaxvG/jc6GV0jSFjuNdnTcqtylqh/5aye3ovUmuG8K2ItPHHh+SSaS4u572aS5uZTl5nNrNyf6DoBQUoNq57dRRSMyohd2CqoySTgAUEgzKiF3YKqjJJOABXnWr6u/jCQwQFk8PKeT0N+R/wC0f/Q/937xq+rv4wkMEBZPDynk9Dfkf+0f/Q/9370wAUAAAAcACt6dPqxpCCNAAAigDoAKXYv90flS0V0DE2L/AHR+VGxf7o/KlrA13XXtpP7O07a+oOuWcjK26n+JvU+i9/pQwE13WzbSf2dpyo+oOuWcjK26n+JvU+i9/pWl8JrVLW+8QqpZ2Zrdnkc5aRiHyxPc1yVrapaxlVLO7sXkkc5aRj1Zj3Ndp8MP+Qn4h/7dv/QXrGqvdEz0asbxN4m07wppD6hqDsRuEcMEY3STyH7qIvdj/wDXPFHibxNp3hTSH1DUHYjcI4YIxuknkP3URe7H/wCueK8gd9R13Vzr2vFTe7Sttao26OxjP8K+rn+J+/QcVzJFQg5MHfUdd1c69rxU3u0rbWqNujsYz/Cvq5/ifv0HFW6KKo64xUVZCQ/8hvRP+wnb/wDoYr26vEYf+Q3on/YTt/8A0MV7dSZzVviCvPdb1t/FUkmn6fKyaGhKXFyhwbwjrGh/559mYfe6DjJJretv4qkk0/T5WTQ0JS4uUODeEdY0P/PPszD73QcZJWONIo1jjRURQFVVGAAOgAranTvqzNII40ijWONFRFAVVUYAA6ACnUUV0DCiisTXddOnlbKyVZtSlXKo33Yl/vv7eg6k8DuQAGu66dPK2VkqzalKuVRvuxL/AH39vQdSeB3IqeBbUW/j2xZpGmnlguHmmf70jYTk/wAgOgHArKtbUW4dmkaaeVt80z/ekb1P8gOgHArc8H/8j9p3/Xtcf+yVnU+FtiZ69Xgtn/yFPEP/AGG73/0c1e9V4LZ/8hTxD/2G73/0c1cqNKPxF2iiiqOoK6f4af8AIb8Q/wDXO1/9q1zFdP8ADT/kN+If+udr/wC1aTMq3wno1FFcX4j8Rz3t1NomiTGNoztvr9P+WH/TOP1kPr/D9cCkk27I5Q8R+I5726m0TRJjG0Z231+n/LD/AKZx+sh9f4frgVkW+k6fawJDFZwhEGBlASfck8k+561LaWkFhax21tGI4kGFUfqSe5PUk9anrrhBRQyv9gs/+fSD/v2KPsFn/wA+kH/fsVYoqxlf7BZ/8+kH/fsVma1d6bo9upNlDNdTErBbqihpG/LhR3Pb8hVjWtah0e3UlDNdTErBbqcNI39FHc9vyFctDDM1xJe3sgmvZhh3AwqL2RB2Ufr1PNLyQGv8O7VoviOt1OUa7uNLuTK0a7VAEtvhVHZRk+/JJ5NeyV5L4G/5KFb/APYLuv8A0bb161XJUVpMlhWH4y0z+1/B2q2QXc727Mg9XX5l/UCtyioHF8rTRg+CtT/tfwZpN4W3O1uqOfVl+Vv1U1vVwvw4/wCJe/iDw83H9nagxiHpE/K/yJ/Gu6pvcuqrTaQUUUUjMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRmVFLMQqgZJJwAKAForlIviX4Ln1P+z4/EdibktsA34Un0D42n866vrQAUUVna1r+k+HbL7Zq9/BZ2+cB5WxuPoB1J9hQBo0ViaB4v8AD3igSf2Lq1teNGMuiNh1HqVODj3xW3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFIzBVLMQFAySegqO2uYLy3S4tZ454XGUkicMrD2I4NAEtFFFABRUM93bWzxJPcRRNM+yJZHCl29Fz1PsKmoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOPjr/ySfUv+usH/AKMWvR684+Ov/JJ9S/66wf8AoxaAPRU/1a/QVz3j3VP7I8Eapcq2JGhMMeOu5/lGPpnP4V0Kf6tfoK4bx3/xNfEPhjw6PmWe7+1zr/0ziGcH2PzflTW5pRSc1f8Aqx0nhXS/7F8LaZp5Xa8MCiQf7Z5b/wAeJrXoopESbbuwooooEFcv4y8ZW/ha0jhhjF3q90CLSzBwWPd2P8KDufwHNdHdSm3tJpgMmNGYA98DNeCaQ02oQrrt/M1zqWoxJNNM3YEZCKP4VXOAKaLhDmZYtra4a7n1HUbg3eqXRzPcEYGOyIP4UHYVveEf+R+0/wD69Lj/ANp1mVp+Ef8AkftP/wCvS4/9p03sdFRJQsj1qvMfG/iW9vdauPDsGnX76bbBRfSWzRhrgsoYRAs6kJhhuPU9OBnPp1eYah/yOviH/rtD/wCiI6qlFSlZnKikmvSRxrHH4d1NUUAKqiAAAdh+9pf+Ehn/AOhf1X/yB/8AHauUV2cvmMp/8JDP/wBC/qv/AJA/+O0f8JDP/wBC/qv/AJA/+O1coo5fMDG1LxVdQRRQwaPdwXNy/lQyXXl+WrbSxJ2uScKrHHfGMis21tRbK7NI0s8rb5pn+9I3qf6DoBwKueJv9don/X83/pPNUVTbUArtvhb/AMeWv/8AYUH/AKTQVxNdt8Lf+PLX/wDsKD/0mgrKt8Imd7XFeN/G50MrpGkLHca7Om5VblLVD/y1k9vRepNdrXzl4Nnlv/D6arduZr++kkluZ2+9I29gCfoAAB0Fc6Kpx5nY1bGxFoJZJJpLi7nfzLm5lOXmc9z/AEHQCtTQ/wDkevDX/X1N/wCks1Vqs6H/AMj14a/6+pv/AElmps6Zq0GkeyV5n4+1PVr7X/7AtbWCXTIbeO4u0kuTEbguzhUJCN8g2EkfxZAPGQfTK821/wD5H/Uf+vC1/wDQpqqkk5JM40ZY1LXVAA0bTwBwANQb/wCM0f2nr3/QHsP/AAYt/wDGavUV28pRR/tPXv8AoD2H/gxb/wCM0f2nr3/QHsP/AAYt/wDGavUUcoGHq2v69aWiY02xgaaVYVmF20vlljjdtMa7semRVC1tUtYyqlnd2LySOctIx6sx7mr/AIp/48rP/r9i/nVeotqAV1vww/5CfiH/ALdv/QXrkq634Yf8hPxD/wBu3/oL1nW+ETKvxQRW8W+FSyglYL4qSOh/cDI/An86wq3vif8A8jX4X/6977+cFYNc6Omj8IUUUUzUSH/kN6J/2E7f/wBDFdn8TJdQmtNN0myvFtY7+ZxcsYy3mRqhJQ4ZSAe+CDjjoTXGQ/8AIb0T/sJ2/wD6GK7bx9/yFPD3/XWf/wBF0RV5JM5q3xHLRxa/FGscepaaiKAqqunMAAOgA82nY8Rf9BXT/wDwXt/8drQoru5UZmfjxF/0FdP/APBe3/x2jHiL/oK6f/4L2/8AjtaFFHKgMbULjxFZabdXQ1PT2MMLybfsDDOATj/W+1ZVhB5dv5zu0txPiSaZ/vSMR1P8gOgHAre13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5VLSTAlrV8H/8AI/ad/wBe1x/7JWVWr4P/AOR+07/r2uP/AGSoq/AxM9erwWz/AOQp4h/7Dd7/AOjmr3qvBbP/AJCniH/sN3v/AKOauRGlH4i7RRRVHUFdP8NP+Q34h/652v8A7VrmK6f4ZfPq/iF15QC2jLDpuAkJGfUBl49xSZlW+E0PiFruradHYaXo8X7/AFDzDJcCUI0Uabd2zIPzHeAD25NclaXmo2FrHbW3h+KOJBhVF6PxJO3knqSetdR47/5GPQP+uN3/AO0ay66KMVy3OZFL+19Y/wCgHH/4Gj/4mj+19Y/6Acf/AIGj/wCJq7RW3L5jKX9r6x/0A4//AANH/wATVbUPEeq6fpt1eyaGhS3heVh9sHRQSf4fatasnxT/AMijrX/XjP8A+gGhx03AyYYZmuJL29kE17MMO4GFReyIOyj9ep5qxRRSA2fA3/JQrf8A7Bd1/wCjbevWq8h8F3EUHxEsllkVDLp9zFHn+Ji8LAfXCsfwNevVyVfjYmgooorMRwrf8Sj4yKekOtafj6yx/wD2K/rXdVwvxJH2BdC8QL10zUEMh9In4b+QH413QORkdKbNamsYy+X3f8CwUUUUjIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvFWhN4m8N3mjrfS2Qul2NNEuWC55GPfp+NbNYXi/xLH4R8N3GtTWc93FAV3xw4yATjPPYZoA82+IMngPw34Nm8HR2ltLq/2dY7WCO3/e+YR8shfGAc8k5zXSXeoeJ/Bfws0u7itINRvLC3j+3xSMS3lgclSDyV/H1rT8Rv4V1zwHd6tqCWUunXFoZRcOFJ+78uG67gcAd88VzHgLxGPDvwMt9W8QszQQpIIlk5aVNxCIM9c9B7e1AGnrfxOjNloMfheCLUtU1sq1vA7HEcf8TPjkYOR+B9K0ta8F2OqeJbHxNr10k8GmWrf6G8WYFbq0nJ/Q56D0ryT4exTeAvGFhq/iDSobOx8SRstpKM/6GWbKoc/dBGPwI969jvPGun2vjmDwle27xSXdsZYbiUjype2wep4NAHntrfaL4q+M+i3vgpIhFYQyHU7qGPykkQjAXBALH3x/Kva68e+J9vp9j408HPokUMPiFr9QVtlCu0HfeB2+vbNew0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmPxMj8Z6taatYaf5OmaBbWjSz3pfdLdYTcY0UfdHYn9e1bPwqLr8KNBMahnFqSqk4ydzcZ7VteMv+RJ1z/rwm/9ANY/wm/5JZ4f/wCvc/8AobUAP8NfEKw12z1d72B9KutIdlvba4cExqP4s9xwfyqbwx4wuPFXhq71u00aaKFd/wBjSWQbrraDgjj5QSMd68a+LQg1fxzey6DZXVxHp1sn/CQPaybVkQODsPqQBz16dPlr3rw3e6ZqPhvT7rRtg054F8hUGAigY247EdPwoA8Z1e28WyfEvwTqviqeCF7q/K2+m253JaqMdW6Fjnk89OvYe915j8SP+Sh/Dz/sIP8A+y16dQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFecfHX/kk+pf9dYP/Ri16PXnHx1/5JPqX/XWD/0YtAHoqf6tfoK4bRv+Jz8Vtc1E/NDpduljEf8AaPzN+IIYfjXZXV3HYabNeTHEUELSufZRk/yrlPhhaSJ4S/tG4H+k6pcyXkh7/M2B+gz+NNGsNISl8jtKKKKRkFFFFAFbUf8AkGXf/XF//QTXhPh3/kWdK/684f8A0AV7tqP/ACDLv/ri/wD6Ca8J8O/8izpX/XnD/wCgCmjehuzSrT8I/wDI/af/ANelx/7TrMrY8CWs9/4uGoQRk2VjDLDLOeFaVivyL6kBTn04HWmzSq/dPVa8w1D/AJHXxD/12h/9ER16fXmGof8AI6+If+u0P/oiOtKHxnKgooortKCiiigDA8Tf67RP+v5v/Seaoql8Tf67RP8Ar+b/ANJ5qirN7sQV23wt/wCPLX/+woP/AEmgria7b4W/8eWv/wDYUH/pNBWNb4RM72vm7wD/AMiTp3/bT/0Y1fSNfN3gH/kSdO/7af8Aoxq50a0fiOkqzof/ACPXhr/r6m/9JZqrVs+CNHudZ12z11R5WmWDu0MhHN1IUaM7f9gB2+buenAJps1qNKJ6pXm2v/8AI/6j/wBeFr/6FNXpNeba/wD8j/qP/Xha/wDoU1XR+NHKiGiiiu4oKKKKAMPxT/x5Wf8A1+xfzqvVjxT/AMeVn/1+xfzqvWb3EFdb8MP+Qn4h/wC3b/0F65Kut+GH/IT8Q/8Abt/6C9ZVvhEyt8T/APka/C//AF73384Kwa3vif8A8jX4X/6977+cFYNc6Omj8IVHPPFbQPPO4SNBlmPaieeK2geedwkaDLMe1dZ4O8HS3U8Oua5AU2EPZWEg/wBX6SyD+/6L/D/vdBsqc1FC+DfCE09xBr2twtEUO+xsXGDH6SSD+/6L/D3+bpc8ff8AIU8Pf9dZ/wD0XXcVw/j7/kKeHv8ArrP/AOi6dP40cjbbuzIooor0CgooooAz9d/5F7U/+vSX/wBANY1r/wAekP8A1zX+VbOu/wDIvan/ANekv/oBrGtf+PSH/rmv8qiW4iWtXwf/AMj9p3/Xtcf+yVlVq+D/APkftO/69rj/ANkrOr8DEz16vBbP/kKeIf8AsN3v/o5q96rwWz/5CniH/sN3v/o5q5EaUfiLtFFSaXpd74l1JtP09zFDER9svcZEAPO1exkI6DoByewLOmUlFXYaXpd74l1JtP09zFDER9svcZEAPO1exkI6DoByewPrmk6TZaJpsOn6fCIreIcDOSSeSxPUknkk8k0aTpNlommw6fp8Iit4hwM5JJ5LE9SSeSTyTV2pbOSc3JnCeO/+Rj0D/rjd/wDtGsutTx3/AMjHoH/XG7/9o1l120PgEgooorYYVk+Kf+RR1r/rxn/9ANa1ZPin/kUda/68Z/8A0A0pbAUaKKKgRSk0291HW4X06RlvrCxnvrcL/E8ckHHvwzfjXtnhzW4PEWgWmqQYAmTLoD9xxwy/gc15z4G/5KFb/wDYLuv/AEbb1taP/wAUd8QLnRG+TStazdWX91Jh99B9f/iRXLV+Jmi9+Dj1Wq/X/M9AooorIxMPxlpn9r+DtVsgu53t2ZB6uvzL+oFN8Fan/a/gzSbwtudrdUc+rL8rfqprerhfhx/xL38QeHm4/s7UGMQ9In5X+RP40+hqtabXbX9P8juqKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFR3FvDdW8lvcRJLDIpR43XKsD1BB6ipKKAOAT4LeBUvhc/2U5QPvFu1zIYgf93P6dK6XWPCWh69FZQ6lYLPDYuJLeESOkaEdPkUgHHoQRW1RQBl674d0nxNpZ03WLNbq0LBthZlwR0IKkEfgapa74I8PeJNKt9O1Ww+0Q2yhYHaRvMjwMcPnd2HUnPetKDWtNudZu9IhvYn1G0RXntwfnjVhkEj6EfmPUVfoA5Xw18OfDHhO7a80ywP2xhg3M8jSyAegLHj8K6qiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAq6nYRarpd3p87OsV1C0LlCAwDDBxkHnmqWi+HrfQPC8Gg2NzcrBbxGKOdmUyrnJznbjIz6Vr0UAc94W8F6T4S0m40+yEs63MjSXM10weSdm67iAAfTpSeE/Bth4Ngu7bTLm8a0uJjMttO6skJPUJhQQPqT0q9q/iHTdDuNOg1Cdo5NRuVtbYBC2+Rug4HH1NalAGFrfhOw17WdG1S6luUn0mYzQLEyhWY4+9kEkcdiK3aKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj46/wDJJ9S/66wf+jFr0evOPjr/AMkn1L/rrB/6MWgDU+Jd7Jb+Cms7f/j51GWOziHqWPI/IEfjXVafZR6dptrYw/6u3iWJfooA/pXGa5/xOPib4d0ofNFp0L6hMB69E/IgfnXeU3saz0hGPzCiiikZBRRRQBW1H/kGXf8A1xf/ANBNeE+Hf+RZ0r/rzh/9AFe7aj/yDLv/AK4v/wCgmvEfAWiXXivR9Nt7d3g02C1hW7vF4JOwZijP971b+H69GjWlJRu2aWiaJdeK757e3d4NMhbbd3icEnvFGf73q38P16eu2Nja6ZYw2VlAkFtCoSONBgKKLGxtdMsYbKygSC2hUJHGgwFFWKREpOTuwrzDUP8AkdfEP/XaH/0RHXp9eYah/wAjr4h/67Q/+iI62ofGJBRRRXaUFFFFAGB4m/12if8AX83/AKTzVFUvib/XaJ/1/N/6TzVFWb3Ygrtvhb/x5a//ANhQf+k0FcTXbfCvLaXrcygmKXUyY3xw4WCFSQe4DKw+oI7VjW+ETO9r5u8A/wDIk6f/ANtP/RjV9I14H8JvCF34h8L2P9oxSW+jQtIJFPyvdt5jfIO4QdGPUnIHeudF05KLuzf8NeGpPF0v2i4DR6CjYLA4N6R1VT2j9W/i6DjJr1qKKOGJIokWONFCoijAUDoAOwoiijhiSKJFjjRQqIowFA6ADsKfSJlJyd2Feba//wAj/qP/AF4Wv/oU1ek15tr/APyP+o/9eFr/AOhTVrR+NCRDRRRXcUFFFFAGH4p/48rP/r9i/nVerHin/jys/wDr9i/nVes3uIK634Yf8hPxD/27f+gvXJV2Hwthlc6zqIjb7JcSRJBKRgSlAwYr6gE4z0yD6VlW+ETKfxP/AORr8L/9e99/OCudnnitoHnncJGgyzHtW98Vp4rbxJ4anncJGltfFmPbmCr3g7wdLdTw65rkBTYQ9lYSD/V+ksg/v+i/w/73TmubQmowDwd4Olup4dc1yApsIeysJB/q/SWQf3/Rf4f97p6LRRSMW23dhXD+Pv8AkKeHv+us/wD6LruK4fx9/wAhTw9/11n/APRdXT+JCMiiiivQLCiiigDP13/kXtT/AOvSX/0A1jWv/HpD/wBc1/lWzrv/ACL2p/8AXpL/AOgGsa1/49If+ua/yqJbiJa1fB//ACP2nf8AXtcf+yVlVu+ALG51DxQurQx/8S+zilhM7dJJGKgqnrt2nJ6A8cnOMqr90TPVq8Fs/wDkKeIf+w3e/wDo5q96rwrQdJv/ABF4m8RafYloIU1u9N3eleIVMzfKueGkI6DoOp7A8qLpyUXdlzS9LvfEupNp+nuYoYiPtl7jIgB52r2MhHQdAOT2B9c0nSbLRNNh0/T4RFbxDgZySTyWJ6kk8knkmjSdJstE02HT9PhEVvEOBnJJPJYnqSTySeSau0mxTm5MKKKKCDhPHf8AyMegf9cbv/2jWXWp47/5GPQP+uN3/wC0ay67aHwFIKKKK2GFZPin/kUda/68Z/8A0A1rVk+Kf+RR1r/rxn/9ANKWwFGiiioEbPgb/koVv/2C7r/0bb12fjvQZdc8PM1nldSsnF1Zuv3hIvOB9Rx9celcd4Aje48dtPEjPDa6fNFNIB8qO7wsqk+pCMceg9xXrFclR++wjJxlzIxvCuvReJfDlpqSYV3XbMg/gkHDD8/0IrZrz+z/AOKO+I0tifk0nXyZYP7sdyPvL+P9VHavQKhlVYpO62YVwrf8Sj4yKekWtafj6yx//Yr+td1XC/EkGwTQvECjnTNQQyH/AKZPw38gPxoQ6OsuXvod1RQDkZHSikZBRRRQAUUUEgAknAHegAornm8e+D1Yq3inRQQcEfb4v/iqT/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAdFRXO/wDCfeDv+hq0T/wPi/8AiqP+E+8Hf9DVon/gfF/8VQB0VFc7/wAJ94O/6GrRP/A+L/4qj/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAdFRXO/wDCfeDv+hq0T/wPi/8AiqP+E+8Hf9DVon/gfF/8VQB0VFc7/wAJ94O/6GrRP/A+L/4qj/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAdFRXO/wDCfeDv+hq0T/wPi/8AiqP+E+8Hf9DVon/gfF/8VQB0VFc7/wAJ94O/6GrRP/A+L/4qj/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAcL4XkEv7SHjJl6CwiX8lgH9K9cr5x8GeJorL4zah4n1C4jttE1uS8tra8ncJGwjZGBJPA4Cj6nFe2f8J94O/6GrRP/A+L/wCKoA6Kiud/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qgDoqK53/AIT7wd/0NWif+B8X/wAVR/wn3g7/AKGrRP8AwPi/+KoA6Kiud/4T7wd/0NWif+B8X/xVH/CfeDv+hq0T/wAD4v8A4qgDoqK53/hPvB3/AENWif8AgfF/8VR/wn3g7/oatE/8D4v/AIqgDoqK53/hPvB3/Q1aJ/4Hxf8AxVH/AAn3g7/oatE/8D4v/iqAOiornf8AhPvB3/Q1aJ/4Hxf/ABVH/CfeDv8AoatE/wDA+L/4qgDoqK53/hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiqAOiornf+E+8Hf8AQ1aJ/wCB8X/xVH/CfeDv+hq0T/wPi/8AiqAOiornf+E+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KoA6Kiud/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iqAOiornf+E+8Hf9DVon/gfF/8VR/wn3g7/oatE/8AA+L/AOKoA6Kiud/4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKoA6Kiud/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qgDoqK53/AIT7wd/0NWif+B8X/wAVR/wn3g7/AKGrRP8AwPi/+KoA6KisSz8ZeGNQu47Sy8RaTcXMpxHFFeRs7n0ABya26ACiiigAooooAKKKKAPNvin/AMhzwD/2MEH8xXpNebfFP/kOeAf+xgg/mK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj46/8kn1L/rrB/wCjFr0evOPjr/ySfUv+usH/AKMWgC34G/4m3ijxP4gPKNcLYwN/sRjBx7H5TXeVzHw90w6V4F0uFhiWWLz5M9Sz/Nz+BA/Cunpvc0rNObt6fcFFFcP41+JWneF1e0tdl5qmMeUD8sR9XI/kOfp1pJXFCEpvlijtHmijljieRFkkzsUnlsDJwO9SV5D8KLnUfEnijVfEOqXDzyxQiBN33V3nOFHYAJ29fevXqbViqtP2cuW4jKroUZQysMEEcEVBZWNrptlDZWVvHb20K7Y4olCqo9ABVivLpvA2seNfFur3Pi6e+ttGt5BHptlbXQVJE/56NtJ5+uDz7UjI9Rorybwmt14Q+LNx4NtdTur/AEaax+1pFcyeY1q2egPof6ivWaACvMNQ/wCR18Q/9dof/REden15hqH/ACOviH/rtD/6Ijrah8Y0FFFFdpQUUUUAYHib/XaJ/wBfzf8ApPNUVS+Jv9don/X83/pPNVnw74duPF12wDPDosLFbi4Q4adh1jjPp2Zh06DnJXGclG7Yg8O+HbjxddsAzw6LCxW4uEOGnYdY4z6dmYdOg5yV9ftbW3sbSK1tYUht4VCRxxrhVUdABRa2tvY2kVrawpDbwqEjjjXCqo6ACpq5JScndkhUNzdW9lA091cRQQr1klcKo/E1NXAeIPAE/i3x9Bfa9JFc+G7W3xb2IlYEzd2dQAMde/YVIHa2WpWOpRmSwvba6jBwWglVwD9QatV4xrei6X4M+LPhNPCcX2O6v5GjvrOBjseDj5ivb+L/AL5z2r2egArzbX/+R/1H/rwtf/Qpq9JrzbX/APkf9R/68LX/ANCmrWj8aGiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzq14Z8My+L5/Om3x6DG2HcHDXjDqiHsnYt36DuaxnJR1YmHhnwzL4vn86bfHoMbYdwcNeMOqIeydi3foO5r16GGK3hjhhjSOKNQqIgwqgcAADoKIYYreGOGGNI4o1CoiDCqBwAAOgp9ckpOTuyTK1Lw5pWr6vpmp39qJ7nTC7WpYnajPtydvQn5RjPQjI5rVoqC9vLfTrKe8u5lht4EMkkjnAVRyTUgSSTRRMiySIjOdqBmALH0HrT6+fNR1HV/EnxH8GeJbwPb6Xd6l5WmWjDBESkfvW92J/ICvoOgArh/H3/IU8Pf9dZ//AEXXcVw/j7/kKeHv+us//ourp/EgMiiiivQLCiiigDP13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5Vs67/AMi9qf8A16S/+gGqfhTw9ceLvLVWeHR4QFuLlDhpmA5ijP6Mw6dBzkrlOSjqxMl8PeHrjxddsqs8OjwuVuLlDhpmHWKM/ozDp0HOSvsFpaW9haRWlpCkNvCgSOONcKqjoAKLS0t7C0itLSFIbeFAkcca4VVHQAVNXHKTk7skKigtoLZXW3hjiDu0jiNAu52OSxx1JPJPepabIGaJwhw5BCn0NSBzer/EPwjoWoGw1LXrSC6Bw0WSxQ/7W0Hb+NdBaXltf2kV3Z3EVxbyrujliYMrD1BFeFeCdX8H+EdP1rSfHNvDDroupGujd2xla5Q8gq2DkH09812PwUsLyz8JXkssEtvp91fST6fBL95IDjHHYH/6/egD0qiiigDhPHf/ACMegf8AXG7/APaNZdanjv8A5GPQP+uN3/7RrLrtofAUgooorYYVk+Kf+RR1r/rxn/8AQDWtWT4p/wCRR1r/AK8Z/wD0A0pbAUal0vS73xHqZ07Tm8tY8fa7wjK26nsOxkI6Dt1PGATS9LvfEepnTtOby1jx9rvCMrbqew7GQjoO3U8YB9f0fR7LQdMi0/T4fLgj55OWdj1Zj1LE8kmuapUtoiWw0fR7LQdMi0/T4fLgj55OWdj1Zj1LE8kmr9FFcwjnfG3h9vEXhua3gO2+gIuLSQHBWVeRg9s8j8ak8H+IF8S+G7a+YbbkfurmPGCkq8MMdvX6EVvV5/8A8ib8SP7mkeIT/wABiuh/Ldn8S3tTNoe/Bw6rVfqegVh+MtM/tfwdqtkF3O9uzIPV1+Zf1ArcopGUXytNGD4K1P8AtfwZpN4W3O1uqOfVl+Vv1U1vVwvw4/4l8niDw83H9nagxiHpE/K/yJ/Gu6pvcuqrTdgooopGYVxfxZ1R9I+F+u3ETlJHhECkdf3jBDj8GNdpXm3xx+fwDFbHpcajbxH6Fif6UAaWhfDHwlaeH9OguvDmnTXMdtGs0sturO77RuJJ7k5rQ/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6KAOY/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K6eigDmP8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6KAOY/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K6eigDmP8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6KAOY/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K6eigDmP8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6juJ4rW3kuJ5FjhiUu7scBQOSTQBzn/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hWVJ8WNGCPPBpWuXNihIN7DZ5h475LDj8K6i18RaVeeHxrkV2n9neWZDM3AUDrkeo6Yq5Upx3QWMz/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrMi+K+gyESSWmqwWTEhL6W1xA59A2e/uK3oPFukTeFh4jadodOKlt8q4PBxjAzzntTdKcd0Fip/wrjwX/0K2k/+Aq/4Uf8ACuPBf/QraT/4Cr/hWXH8WNB8vzbmz1azt2UtDPc2u2ObAzhDk5J7ZxWxf+N9G0zRdN1a7eZLPUCoibZyMjOWGeOKHSmtGh2I/wDhXHgv/oVtJ/8AAVf8KP8AhXHgv/oVtJ/8BV/wp2i+N9O1mO9l+zX9jBaRiV5b6DylZDnDA5ORwayf+FsaFnzfsOsfYN23+0PsZ8jr1znOPwoVKbdrBY6O48KeHrrSoNLn0SwksLc5ht2t1KRn1UY4PJ/OqH/CuPBf/QraT/4Cr/hWpf8AiHStN0M6zc3kYsNgdZVO4OD0246k1y6/FnQViMt3Z6tYxFC8L3VrtWcD+4cnJ/KlGnOWyFY1P+FceC/+hW0n/wABV/wo/wCFceC/+hW0n/wFX/CrWpeLtI0jQLfWbyZ0trlVaFAmZJCwyAFHesSH4paObyC3vtN1jTFnYLFNfWnlxsT05yaapTaukFjR/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K5j4heMTpXivQbKN75IoLlZrtYUO2ZeCAMfe78V1eqeN9G0fR7PUbx5lF4oa3txHmaTPYL6896boysnbcdiP8A4Vx4L/6FbSf/AAFX/Cj/AIVx4L/6FbSf/AVf8Kh0f4h6Rq2qJpktvqGm3sozFDqEHlGT/d5IqXXPHuj+H9UbTLpLuW98pZUhgh3tLk4CrzyaXsp3tbUVhf8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CtbQ9Zh17S47+C3ubdHZl8u5j2OpBwcjJ71o1DTTswOY/4Vx4L/6FbSf/AAFX/Cj/AIVx4L/6FbSf/AVf8K6eikBzH/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hXT0UAcx/wrjwX/wBCtpP/AICr/hR/wrjwX/0K2k/+Aq/4V09FAHMf8K48F/8AQraT/wCAq/4Uf8K48F/9CtpP/gKv+FdPRQBzH/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hXT0UAcx/wrjwX/wBCtpP/AICr/hR/wrjwX/0K2k/+Aq/4V09FAHMf8K48F/8AQraT/wCAq/4Uf8K48F/9CtpP/gKv+FdPRQBzH/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hXT0UAcx/wrjwX/wBCtpP/AICr/hR/wrjwX/0K2k/+Aq/4V09FAHMf8K48F/8AQraT/wCAq/4Uf8K48F/9CtpP/gKv+FdPRQB5J8VPA+haP4Du9Z0LR7Ow1LTZYbqGe2hCMMSKDyO2CT+Ar1LT7tNQ021vY/uXEKSr9GAI/nWB8SIRN8NfEaHtp8r/APfKk/0qfwFKZ/h74ckPU6Zbg/URqKAOhooooAKKKKACiiigDzb4p/8AIc8A/wDYwQfzFek15t8U/wDkOeAf+xgg/mK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryP9oXUhbeAYbBT893dKSPVE5P6la9crgLi2g8S/FqS3uYY7ix0jTyrxyKHRpJexB4OVb9KaNKcb3v0R1+larpepWkTaZfWl1EEG028quAMexrQrgb74L+BL6UyjRvsspOd1rPJHj6AHaPyqvD8F9Atp45LfVvEEIRgwRL/wCXg9wVpGZ6NXkfinw9a+PvHM1hpMUNt9giP2/UVTO6U/dTAIBIxyevX057Pxv4im0bTorHTV8zWdRbyLOMdQTwXPsM/njtmr3hTw7D4Y0KKxjbzJj+8uJj1lkP3m/oPYU1pqb05OkvadXt/mZnw68LXHhTw9LaXnlm6luXkdozkEcKuD6YGfxrrqKKRlObnJyfUK4bxr49k0a9i8PeH7M6n4mul/dW6/dgB/jkPYd8fyFdzXkbfB7xBH4h1LWrH4gXFndX8heVorD5sE5C583oOn4UEnUeA/A7+Ghdarq12b/xFqJ3Xl2eg/2E/wBkf09hXaVwvhfwX4m0PW0vdU8d3msWqoym0lttikkcHO89PpXdUAFcXqvgrU7vX77UrHWrS2S8ZGaKfT2mKlUVOGEqcfKD0rtKKabTugOB/wCEH8Q/9DFpn/gok/8Akij/AIQfxD/0MWmf+CiT/wCSK76ir9rPuFzgf+EH8Q/9DFpn/gok/wDkij/hB/EP/QxaZ/4KJP8A5IrvqKPaz7hc85ufhlf6rcWQ1bxBBJaW8/nNHZ2DQPJ8jKV3mZtoIc5wM+hHWvQLW1t7G0itbWFIbeFQkcca4VVHQAVNRUOTe4BRRRSAK4rxz45k8PS22jaNZnUfEd+MWtqvRB/ff0Uf0PSu1rzzxH8HtE8TeI7jXbrVtbgu5gqkW1wiKoAAAGUJA49aALfgjwHJol3Pr+vXf9peJbwfvrk/dhX+5GOw7Z/kK7ivN9K+DGjaTq1pqMOveIpZLaVZVjmvEZGIOcMAgyK9IoAK5jWfBUGsay+qDVtSsppIUhdbYwlWCFiD88bHPznoa6eimm1qgOL/AOFdr/0M+ufla/8Axij/AIV2v/Qz65+Vr/8AGK7Sinzy7gcX/wAK7X/oZ9c/K1/+MUf8K7X/AKGfXPytf/jFdpRRzy7gcLc/C2wvxFHqGua1d26SrI0EjQKsm05wxSJWwehwRXbwwxW8McMMaRxRqFREGFUDgAAdBT6KTbe4BRRRSAK8w+Ltn4o1Q6VYaPosmp6T5nnX0Ecoj80qRtRiT93ucV6fRQB86eLvEfjOfxJ4Qe98FJYT2d2TY2y3KkTthfk4+7jAr33Rrm9vdGtLnUbP7FeyRhprfdu8tu4z3qhrnhOw1/V9G1K7luUm0mczwLEyhWY44bIJI47EVu0AFZmseH9L19IE1O2MwgcvERI6FSRg4KkHoa06KAOY/wCFe+Gf+fGf/wADZ/8A4uj/AIV74Z/58Z//AANn/wDi66eindgcx/wr3wz/AM+M/wD4Gz//ABdH/CvfDP8Az4z/APgbP/8AF109FF2Bysvw48LTwvFLp8zxupVlN7Pgg8EffrpLOzt9Ps4bO0hSC2hQJHFGMKijoAKmopXAKKKKACs7X5LuHw7qUtgCbxLWRoQOu8KcY/GtGigDyf4QaJ4Y1T4fpeXFnZX+oTtIdRluo1kk37jkMWyQMYP6074QOkWteL9P0uVpPD1tfAWJ3bkUnO5UPp0/T1rc1b4Q+DNY1GW+m0x4ZpjmYW07xLIe+VBx+WK6vRtE03w/psenaTZx2lpH92OMd/Uk8k+55oAv0UUUAc/4k8LJ4hnsrgajc2U1oJAjQKjbg+3IIdT/AHRWT/wr6f8A6GfUf+/Fv/8AG67aiqUpLZgcT/wr6f8A6GfUf+/Fv/8AG6P+FfT/APQz6j/34t//AI3XbUU/aS7hc4n/AIV9P/0M+o/9+Lf/AON1Dd/DQ31nPaXHiXUmgnjaKRRDAMqwwRny+ODXeUUueXcCho+j2Wg6ZFp+nw+XBHzycs7HqzHqWJ5JNX6KKkAooooAKwvGHh9fEvhu5sAdtwB5ts+cFJV5U57en0JrdooHGTi7o53wT4gbxD4chnnG2+gJt7tCMFZV4OR78H8a6KvP7z/ijfiNFfj5NJ18iGf+7Hcj7rfj/Vj2r0CmzSrFJ8y2Zwrf8Sj4yKekWtafj6yx/wD2K/rXdVwvxJH2BNC8QKOdM1BDIfSJ+G/kB+Nd0DkZHShhU1jGXy+4KKKKRkFV7uxtNQiWK9tYLmNWDqk0YcBh0IB7j1qxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/im903T/DN/c6vF51ikf72LGfMzwF/E4rYrN8QaJb+ItDutKuiyxXCbdy9VOcgj6ECqjbmVwOFs9T8a3+gouk+HdJ0nSTB+5+2TFysWOPlX29RXHrJIvwGt0BIhfU9kxXps3k/lnFd3b+BvE72KaRqHjB30hF8sxwWqpK8Y42l+oGOO9OPh3SfBfw6vtM1u4kvtJaUlmjg2tGrkY7noec/pXYqkFou62v+pVzo9ctLBvBN9bOkYslsWAXA2hQnGPpgV5PLh/hj4It5v+PKXUlFxnoRvbAP61q6v4dSz8GzyXHj24utCS3LW9qAgMnHyIXySwzjjH5VdtrfR7T4M6RZ+JkmjtbgKPMjX5oWZiyP7fX3oglBKzvr+gHVfEK3tZPh9q6XCJ5aW5ZMj7rD7uPxxXCeIYkn8BeAIpFDI9zbqwPcFaZ4w0B7HwbO+peObjUrRIx9itAFXzX6LlgSXx1/CutTwdJrPhHwrbzXRtJNN8i4ZTFvLFVHy9Rj680o8tOKd+v6ARfGGWaL4fypCdqyXESSem3Pf2yBVdLX4iS6Mtilt4S+wtB5YQedjYVx6+ldxrOkWmu6TcaZfIXt512tg4I9CPcHmuIXwL4ti0/+xofGjDSdvljNoDMI/wC7uznpx1/wrOnOPIou2j6iRzN/ol9oekeCtE1qWCa2/tUl/KctGVJBUZIHq1d38UILaX4d6r9oVcRorRk9n3DGP5VQ8R6J4W0HwTY6BqRnhsGmWOG6QZaOY5IkLdu/tXKeOdBmsvCMjap41uNWA2rY2gVU3uSACcEl8DPNaxaqSi79e2+ozoNT1ew07w94RhOijV9ZkhjOnwFtuxgi5bPbtWD8RbjxndeFvM12y0mxsRcR4jikZ5i2eOclfWuu1HwRPq+ieHp7W/fTdY0uBBFNs3gHaMqR9RVPVPhxrPiayKeIfFTzzJg26w2qpFEc8sVBG44yO2M0oTpxabf5/h0DQXxvz4n8B/8AX7/RaSdEuvjtAl2Ay2+mb7ZW6Bs8ke/JrZ8U+ELvXbXSJLPU1tdS0uQSRTtFuVmwAcrnjoD3qPWfBV1rVvpl62rNa+IrFMLqEEQw57gp6e3uaiM48qV+jQjM+MCRp4d068UAXsF/F9ncfeBOcgfkPypHhST48ozqCY9K3LnsckZ/Imrdt4F1TUdXtNR8V69/aYsm329rFAIog395sdfyrZ/4Rf8A4rv/AISb7Z/y6fZfs3le+d27P6Yo54xjy36P8QOhooorlEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8ENzBJBcRJLDIpR45FDKynggg8EUQQQ2tvHBbxRwwxqFSONQqqB0AA4AqSigAooooAKKKKACiiigDzb4p/8hzwD/wBjBB/MV6TXm3xT/wCQ54B/7GCD+Yr0mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZlRGdiAqjJJ7CuH+Gate2er+IZAd+rX7yIT/zyUkKPwO4Vp/EHVDpPgfU5kOJZYvIjx1LOdvH0BJ/CtLw3pY0Xw1p2nYw0ECq/+/jLH8yafQ1WlJvu/wAv6RqVW1C/ttL0+e+vJBHbwIXdj2A/rVmvPNZdvHfi0eHoGJ0TTHEupSKeJZB92LP8/wAfQUImnDmeuy3LHguwudc1Sfxrq0ZWa5Hl6dA3/LC37H6t6+5P8Vd3SIixoqIoVVGAoGAB6UtJhOfO7hRRRQQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3irQYvEvh270yTCvIu6Fz/BIOVP5/oTVHwJr0uueHlS8yup2Lm1vEb7wkXjJ+o5+ufSunrz/AFj/AIo/4gWuuL8ml6zi1vv7qTD7jn6//FHvTXY2h78XD5o6Txlpn9r+DtVsgu53t2ZB6uvzL+oFN8Fan/a/gzSbwtudrdUc+rL8rfqprerhfhx/xL5PEHh48f2dqDGIekT8r/In8aOgo602u2v6f5HdUUUUjIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjuLeG6t5Le4iSWGRSrxuuVYehBqSigDk4Php4Ot7wXUehweaDuAZ3Zc/7pYr+ldJeWNpqFlJZ3lvFPbSDa0UigqR9KsUVTnKWrYHLWPw48I6bereW2iQidDuUu7yAH1AZiP0rqaKKJSlL4ncAoooqQK2oadZ6rZSWd/bR3FvJ96ORcg1g6b8O/Cek3q3lno0KXCHcrO7ybT6gMSAa6eiqU5JWTAKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNvin/AMhzwD/2MEH8xXpNebfFP/kOeAf+xgg/mK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhPG3/E28V+FvDw+ZHuTe3C/7EYyM+x+YV3dcJoH/E4+KHiDVT80WnRJp8JPr1f8iD+ddjqOoW2ladcX95II7eBC7sfQf17YpvsbVF8MF2/M5/xx4in0iwh0/Sx5mtak3kWkY6rnq59AP5+wNaHhXw7B4Y0KHT4jvl+/PN3lkP3mP8h7AVz/AIK0+51nUZ/Gmrxlbi7XZYQt/wAsLftj3Pr7k/xV3VD7BUfKvZr5+v8AwAooopGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZfiLRIPEWgXelz4CzphWx9xxyrfgcVqUUDTad0cn4A1ufU9Dax1DK6ppjm0ulY8krwrfiB17kGqLf8Sj4yKekWtafj6yx//Yr+tQ+I/wDikfG9l4nj+XTtQxZ6kB0U/wAEh/Lk+3vU3xJ/0FNC8Qp/zDdQQyEf88n4b+QH41R0pJzutpL8f+HO6ooBBGRyKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNvin/wAhzwD/ANjBB/MV6TXm3xT/AOQ54B/7GCD+Yr0mgAooooAKKKKACiikJCqWYgADJJ7UALRUNpeW2oWkd1Z3EVzbSjMcsLh0ceoI4NTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1PU7PR9Plvr6YQ28QyzHkk9AABySTgADkk4o1PU7PR9Plvr6YQ28QyzHkk9AABySTgADkk4ryfxD4hury+hvLyDN4ctpmls3y269DNMR/Fz17Z2rkkk1GLkwJdf8ZeIi++2v5dPurkf6JpsUULmNB/y0mZlbHuBx0UZPNdt4Z1y5f4dWut6tOJ7hLRpriUIE3lc5OBwM47V5Zb27RNJNNKZ7uY7pp2HLn0A7KOw7V0N3dyJ8FNH063P+k6o6WcYHX5pCT+gx+NaVIJWLhHmkonUfDGykg8Gx3lx/x86jNJeSn1LHg/kAfxrO1dm8eeLhoMLE6FpTiTUJFPE0o6RfQc5/H0FaPivVpPDmh2GgaIu/VbtFtLJB1RQAC59AB+vsDWz4X8PW/hjQodOhO9x888veWQ/eY/56AVn5mzla9Xq9v8/wDI2FVUUKqhVUYAAwAKWiipOYKKKKACiiigAooooAKKKKACiiigArF8ReI4NAt41ERub+4JW1tEbDSkdST/AAoO7Hp7kgE8R+I4dBto1WM3OoXBK2torYaVh1JP8KDqW7e5IB460tJvtM2oahMLnU7gDzZsYVVHSNB/Cg7Dv1OSSa0hByYGn/wl3iX/AKAOk/8Ag1k/+R6P+Eu8S/8AQB0n/wAGsn/yPUFFbexiOxP/AMJd4l/6AOk/+DWT/wCR6P8AhLvEv/QB0n/wayf/ACPUFR3FxDaW8lxcSrFDGpZ3c4CgdzR7KIWJ7jxtr9pbyXFxoujxQxqWd31aQBQO5/0etTwL4tm8YaXeXc+miwktro2/liYybxsRw2SqkZDjgjP8q8uvLybxDcLNMjRadG263t2GDIR0kkH8l7dTz07z4W/8eWv/APYUH/pNBWdSCSugO9ooorEQUUUUAFFFFABWD4k8SJokcdtbRC61W5B+zW2cDA6u5/hQdz+AyTR4k8SJokcdtbRC61W5B+zW2cDA6u5/hQdz+AyTXJWVk8Mk13dzm61C5Ia4uWGCxHRVH8KDoF7e5JJ0hDm9ALY1jxfgZ1PR898aZJ/8fo/tjxd/0FNH/wDBZJ/8fpaK39lDsOwn9seLv+gpo/8A4LJP/j9H9seLv+gpo/8A4LJP/j9LUN3d29haSXV1KsUEQ3O7dAKPZQ7BYS78SeJrC0kurrWdFigiG53bTJMAf9/6u/DvxVrXiV9WXWI7VPszRGDyYWiYo4Y/OpdsHgcA8V5/cXFxrl2l3do0VrEd1rat1B/56P8A7XoP4frXZ/DD/kJ+If8At2/9Bes6kEldAejUUUVgIKKKKACiiigArF8ReIoNAtowIzc39wStraIcNKw6kn+FR1LHp7kgE8ReIoNAtowIzc39wStraIcNKw6kn+FR1LHp7kgHjrW1nNzNqOozC51O4AEsoGFRR0jjH8KD079TkmtIQcmAqjXZwZbvxHfrO53OlqI0iQn+FAUJwOnJJ9aXydV/6GXV/wDvuL/4irVFdHs49hlXydV/6GXV/wDvuL/4ijydV/6GXV/++4v/AIirVRzzw2tvJPPIsUMalndzgKB1JNHJHsMqztf2tvJPP4p1WKGNSzu8kQCgdSTsqj4I1/XL/wAdwRzapey6TPbTeVBdhN7FduJDhQVzngdcdeuBg3l5N4huFmlRotNjYNBbsMGUjpI4/VV7dTzgDb8H/wDI/ad/17XH/slROK5bpCPXqKKK5hBWT4j8R6d4W0eTU9TlZYlISOKMbpJ5D92ONf4mPYfUnABIPEfiPTvC2jyanqcrLEpCRxRjdJPIfuxxr/Ex7D6k4AJHj002o+ItYGva8FW5UFbOyVt0djGeoB/ikPG5+/QYAAoSLhByZ614P1+bxP4YttWuLIWU0skyPbiTzPLKSvHjdgZ+76Vu1yPw0/5EiH/r8vf/AEqlrrqCXuFFFZ+s6zZ6DpzXt67BchI40G55XPREHdj6f0BNAg1nWbPQdOa9vXYLkJHGg3PK56Ig7sfT+gJrjx4j8XTDzQNGtQ/IgeCSVox2BcSKGPqQAKqKt5qmo/2vq4UXWCtvbK25LRD2Hq5/ibv0HAq5XRCkrXkOwf294u/5+ND/APAOX/47R/b3i7/n40P/AMA5f/jtFFX7KHYLB/b3i7/n40P/AMA5f/jtB1/xcBk3Ghgf9ecv/wAdoJAGTwK4rVdVbxC7Wtq5XSFOJJVODdH+6v8A0z9T/F9Oo6cOwWOt8GeO9Z8QeMZNLul06XTfscs0VzbQvGZHR41ONztlP3nXuRxx19HryTwKoX4gWyqAFGlXQAHQfvbevW65pq0rCCiiipAKKKKAM/XNIt9e0W70y6H7q4jK5x909Qw9wcH8K86XU1vvhdruha7MkWo6ShtpN5++ynMJHc7iAB3JHvXpOqapZ6Np0t9fTCK3iHJxkkngAAckk4AA5JNeM+IZrkeJbXxffWMUEEkojkt9u54UxtR3PQvgnOOBwoz1NwTZvRd/d+a9f+CbWg614j1nRLO7XXHsoxEsSRW0ET52DaWZpEYliQTxgDgc9To+b4i/6Gu+/wDAW1/+NVyfhvVrDRBqemXl3FClvdM0O5vvRnpj1/8Ar12gOQCO9dChG2wq0OWb7FfzfEX/AENd9/4C2v8A8ao83xF/0Nd9/wCAtr/8aqxRT9nHsZFfzfEX/Q133/gLa/8AxqjzfEX/AENd9/4C2v8A8aqxRR7OPYCv5viL/oa77/wFtf8A41WFr3iTxHp5FlY+KbybUZF3BWtbbbCv99/3XT0HUn8SLOva8bFhY2IWXUpVyA3Kwr/ff29B1J/EjnoLUW0MpLtLNKS80z8tI2Op/wAOgHApckX0A9l8K3lxqPhDRL68k826ubCCaaTaF3O0aljgcDJJ4Fa9YXgj/kQfDn/YLtv/AEUtbtcggooooAKKKKACiiorq6gsrWW6upkhgiUvJJI2FVR1JNABdXUFlay3V1MkMESl5JJGwqqOpJrznUb2fxfOJblJYNFQ5t7Rso1wf+eko6gf3U7dTzgKt9fT+LbpLi4jeHRomD2to4w07DpLKPTuqHp1POAtuuinT6saRk/8Izo3/PhH+Z/xo/4RnRv+fCP8z/jWtRW3KuwzJ/4RnRv+fCP8z/jR/wAIzo3/AD4R/mf8a1q5nXNclknk0vS5Nsy8XN0ORAP7q+rn9Op7AppdgMnXLXS5J5NL0u0jWZeLm6BJEA/urzy5/TqewPqfw6XZ8PdFTcxC2+0FiScAkDk+1eX29vFaQLDCu1F98knuSe5PUmvUvh5/yIOj/wDXE/8AoRrGsrWEzpqKKKwEFFFFABRRRQAVxOveJrq/vpNJ0G4MKwPtvNRVVby2HWKPcCC/94kEL05PRviLxFPql1NouiztFFGxS+1CM8oe8UR/v+rfw9PvdKVrawWVrHbW0SxQxrtRFHAFbU6d9WMZjW/+hq1b/vi2/wDjVGNb/wChq1b/AL4tv/jVWaK29nHsBWxrf/Q1at/3xbf/ABqjGt/9DVq3/fFt/wDGqs1la3rcekQoiJ597NkQW4OCx7knso7n+ZIFHJHsBW1vWdW0iFETxPq097NkQW4W2BY9yT5PCjuf5kgV2Xw51DUtS8HQzavefbL1Z54nn2Km/bIyjhQB0Ary+CCQTSXd3L597NjzZcYGOyqOyjsPxOSSa9L+GX/In/8Ab7df+jnrGrFJXBnYUUUViIKKK5Sfx3Yjx3Y+FbSFrqeVnW6nRsJasI2cKePmY7enGM5PpQB1dFFFABRRUV1dQWVrLdXUyQwRKXkkkbCqo6kn0oALq6gsrWW6upkhgiUvJJI2FVR1JPpXF/8ACbaxds02naHamyY/uXvLx4ZHX+8UETbQewJzjGQDxWdfX0/i26S4uI3h0aJg9raOMNOw6Syj07qh6dTzgLbreFK6vIdif/hLfEv/AEA9J/8ABnJ/8Yo/4S3xL/0A9J/8Gcn/AMYqCir9jELE/wDwlviX/oB6T/4M5P8A4xR/wlviX/oB6T/4M5P/AIxUFczrmuSyTvpelybZl4ubociAf3V9XP6dT2BHSiFjo9L+I1/eeNLLw9caRaAXDOktzbXrSCF1iaQKQY1ySE6A8ZGe2fQq8T8L20Vp408MwwrtRbqbvkk/Zp8knuT1Jr2ysJx5XYQUUVk+I/EeneFtHk1PU5GWJSEjjjG6SeQ/djjX+Jj2H1JwASIAPEfiPTvC2jyanqcrLEpCRxRjdJPIfuxxr/Ex7D6k4AJHleiXeq698UPD+t623lztLOlrYxvmKziNvIdo/vOcAs/cgAYAAqlNNqPiLWBr2vBVuVBWzslbdHYxnqAf4pDxufv0GAAK1NA/5Hvw7/13m/8ASeWnY29naLbPY6KKKRiFFFU9U1Sz0bTpb+/mEVvEOTjJJPAUAckk4AA5JNABqmqWejadLf38wit4hycZJJ4CgDkknAAHJJrll8cam6h18MTBW5AkvI1YD3HOD7ZrJkkvNf1FNV1WMxJESbKxJyLcHje+ODKR36KDgdyblbwo3V5DsW/+E21X/oWW/wDA5P8ACj/hNtV/6Flv/A5P8KqUVfsYhYt/8Jtqv/Qst/4HJ/hR/wAJtqv/AELLf+Byf4VUrkNY1iTV5ZNP0+VkskJS5ukODIe8cZ9Oxb8BzkhOlELHfeEfHieKtW1HTxp0ls1mit5vnLIkmSQQCPQjH1z6V2FeW/DWKOHxTfxRIqRpp8SqqjAA3txXqVYSVnYQUUUVIHm3xT/5DngH/sYIP5ivSa82+Kf/ACHPAP8A2MEH8xXpNABRRRQAUUUhIVSzEAAZJPagAJCqWYgADJJ7V474q8VS+OJpdK0qZ4/DUbFLq6jJDagwODHGR0iHRmH3ug4yaPFXiqXxxNLpWlTPH4ajYpdXUZIbUGBwY4yOkQ6Mw+90HGTUEcaQxJFEipGihVRRgKB0AHYVvSpX1ZjUqW0R6H8O1VPAGjKoCqIMAAYAG4109cz8Pf8AkQtH/wCuJ/8AQjXTVgzZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1XVrHRNMn1HUbhILWEZd2/IADuScAAcknFXa434lQxXGhWEU0aSRtqUGUdQQevY00ruwHF654nl1K8hvp0SW6OTpumBwy2w6GaYjjdg8ntnauSSTlW9u0TSTTSme7mO6adhy59AOyjsO1NltLa08VXqW1vFChsrclY0CgnfNzx9KtV2RikUFT6RqNq0vhRbyQLY6Jp0uo3B/2i5VB9c7cD3qCsv4e+HrjxZrLrcBhpNv5bXXpJsHyR/QnJP09cVnV6G9CKu5PZI9N8E6dc6tf3HjPV4yt1erssoW5+z2/bHuf/r/AMRruqRVCqFUAKBgAdBS1zMxnPndwooooICiiigAooooAKKKKACisY+KdI/4SseGUuhJqvkGd4kBIjXjG49ASDkDrjnuM7NABWL4j8Rw6DbRqsZudQuCVtbRWw0rDqSf4UHUt29yQDtV5Hr2lW+oePteuJ5b0SxtBChhvZotqeSjbQEYDGSTj1JPerhHmdgNG0tJvtM2oahMLnU7gDzZsYVVHSNB/Cg7Dv1OSSauVzf9gWn/AD86r/4Nbr/45R/YFp/z86r/AODW6/8Ajldii0rIo6Siub/sC0/5+dV/8Gt1/wDHKP7AtP8An51X/wAGt1/8cp2YHQXFxDaW8lxcSrFDGpZ3c4CgdzXE3l5N4huFmmRotOjbdb27DBkI6SSD+S9up56M17SoLWbSQs17Ikl7tdLi+mmRgIZGGVdyOGVTnHarNTbXUArtvhb/AMeWv/8AYUH/AKTQVxNdt8Lf+PLX/wDsKD/0mgrKt8Imd7RRRXMIKK5nxp40sfBumLLLG11fz5W0sYzh52AyT/sqByzHgD3wDtaTePqOj2N9JEsT3NvHM0atuCllBwDgZxnrgUAXKwPEviWPQ447a3jW51W5B+zW27AwOruf4UHc9+gyTW/XlfizStO1L4gXxv7C1ujHYWoQzwq+3LTZxkcVUI80rAWLK0aGSa7u7j7VqFyQ1xcsMFiOiqP4UHQL29ySTc3D1Fc3/wAIv4f/AOgFpn/gJH/hR/wi/h//AKAWmf8AgJH/AIV2qLWiKOk3D1FG4eorm/8AhF/D/wD0AtM/8BI/8KP+EX8P/wDQC0z/AMBI/wDCnZgb13eW1jayXV1MkUMa7ndj0FcZcXFxrl2l3do0VrEd1rat1B/56P8A7XoP4frTfEGg6PZwWU1rpNjBKL2LDxW6Kw59QKsVNtdQCut+GH/IT8Q/9u3/AKC9clXW/DD/AJCfiH/t2/8AQXrOt8ImejUUUVyiCucsfG2lal40uvDFkZJ7m0geWedAPJR1ZFaLd3cb1yBwM4JzkDk/G3ja5v7y48NeGrlomiJj1LVIj/x7+sMR7y+rfwf733aHw8srbTvG9laWkSxQRaRdBUX/AK6235n3osWoPl5j16uf8XeLbHwhpSXV2Q007+TbQ7tvmSEZ5boqgAkseg9TgHoK4fx9/wAhTw9/11n/APRdVFXaRBydr4i0Y3M2o6jrtnc6ncACWUPhUUdI4x/Cg9O/U5Jq5/wlmgf9Be0/7+CrNFdqhZWRVit/wlmgf9Be0/7+Cj/hLNA/6C9p/wB/BVminysCq3i7w8qlm1i0AAyT5grn7u9l8RTpPIrR6YjBreBhgyntI4/VV7dTzgDa13/kXtT/AOvSX/0A1jWv/HpD/wBc1/lUta6gS1q+D/8AkftO/wCva4/9krKrV8H/API/ad/17XH/ALJU1fgYmevVk+I/EeneFtHk1PU5WWJSEjijG6SeQ/djjX+Jj2H1JwASNavKfi0T/wAJV4KXJ2mS9JHbIiXFcYJXdjnpptR8RawNe14KtyoK2dkrbo7GM9QD/FIeNz9+gwABVqiiqO2MVFWR3/w0/wCRIh/6/L3/ANKpa66uR+Gn/IkQ/wDX5e/+lUtddUnE9zP1nWbPQdOa9vXYLkJHGg3PK56Ig7sfT+gJrhFW81TUf7X1cKLrBW3tlbcloh7D1c/xN36DgVP8R7C01DX/AA9HeW8c6LFdsFcZAP7rmuf/AOEZ0T/oGW3/AHxXRRhdcwJHS0VzX/CM6J/0DLb/AL4o/wCEZ0T/AKBlt/3xXRZjOloJAGTwK5r/AIRnRP8AoGW3/fFZfiTw9o8HhbV5YtOt0kSymZWCcghDg0mmgJNV1VvELta2rldIU4klU4N0f7q/9M/U/wAX06iqFUKoAUDAA6ChVCqFUAKBgAdBS0kgNnwN/wAlCt/+wXdf+jbevWq8l8Df8lCt/wDsF3X/AKNt69arlq/GyWFFFRS3EEH+tmjj/wB9gKzAlqnqmqWejadLfX0wit4hycZJJ4AAHJJOAAOSTVe68S6HZxPJPq9ioRSxH2hMnHoM8mvHp/iLYa7qS6pqiXKRxEmxstqkQDpvbnmQj/vkHA7k1GN2UoSeyOqkkvNf1FNV1WMxJESbKxJyLcHje+ODKR36KDgdyef8d2ur3OkEWLK9qBm4iVPnIBzkH09h+tRXPxD0hraVYvtSylCEbyxwccHrXOWPxH1W3wt3FDdL3ONjH8Rx+ldPupWR1UKFVPnS27nKWcXn31vDjPmSKv5nFe/15LJdaXf65YatZWF3ARdIZ4ljDIzZz8pB+8fTHNd//wAJLH/0C9V/8Bv/AK9ENC8bPmcTborE/wCElj/6Beq/+A3/ANej/hJY/wDoF6r/AOA3/wBetLnEbdYeva8bFhY2IWXUpVyA3Kwr/ff29B1J/EilqXi54xFa2en3cd7ckrC91CVjXAyWJzzgdu/t1rNtbUWyuS7SzStvmmflpG9T/h0A4FK99gC1tRbK5LtLNK2+aZ+Wkb1P+HQDgVK/+rb6GnU1/wDVt9DTA9Y8Ef8AIg+HP+wXbf8Aopa3awvBH/Ig+HP+wXbf+ilrdrgJCiisDxZ4ssvCemLcXCtcXU7eXaWcR/eXEnoPQDqWPAH4AgG/RXGfDbWda1vSdUn124iluo9RaNVhjCpEhijcIvcgFzyck12dAPQK8g1nxZJ4j1eUTaZqLaPZzslvDHECtxIjEGV+eQGB2r7bjzjb6/XkGjf8eD/9fNx/6OetaMVKWo0S/wDCSD/oEar/AN+F/wDiqP8AhJB/0CNV/wC/C/8AxVW6K6+XzGVP+EkH/QI1X/vwv/xVH/CSD/oEar/34X/4qrdFHL5gYGp+J7i7m/suwtruynePzJLi4jCmOPOPk5OWJyPbr6A1be3itIFhhXai++ST3JPcnqTTtU/5Gsf9eI/9DNPqbagFem/Dz/kQdH/64n/0I15lXpvw8/5EHR/+uJ/9CNY1+gmdNVLVtWsND0q41PU7lLazt03ySv0A/mSTgADkkgDmrteMeMLi51z4gX9rfS77DRZIhZ2oGE8x4lcyv/ecb8L2UdBkk1zjjHmdixpPibW/EvxJ0K/uXuNP0t5Zo7XS92CU8iQ+ZOB1ckAheiAY5OTXr9eOaD/yPfhz/r4m/wDSaWvY6bHUiouyCvN/F/j/AE9tTn8OWetW1i0Xy39206o6Z/5ZRZP3z3b+Ht83T0ivKIf+QprX/YTn/wDQqulHmlYlENr4j8LWVrHbW2saXFDGu1EW5TAH51N/wlnhz/oO6b/4FJ/jViiuzlYyv/wlnhz/AKDum/8AgUn+NH/CWeHP+g7pv/gUn+NWKKOVgZ174x0pIdum3dtqN6/EVvbzBsn1YjO1R3P8zgViQQSCaS7u5fPvZsebLjAx2VR2Udh+JySTVnXv+Rh0r/r3uf5xUlTbXUAr0P4Zf8if/wBvt1/6OevPK9D+GX/In/8Ab7df+jnrKvshM7CiiuN+JWt6jo3h+0i0uVYLnUb1bL7RjJhVkd2ZR/ewmB9c1zCSuZnjfxvOLqXw54cmAvgMXt8OVs1P8K+spHQduprmfCdjBp/jHw3b26kKLmckscs7G3lyzHuSepqrY2MGn2q29upCgkkscs7HqzHuSeprS0H/AJHrw5/18Tf+k0tO2h08ijBnsdFFFI5iK6uoLK1lurqZIYIlLySSNhVUdST6V51fX0/i26S4uI3h0aJg9raOMNOw6Syj07qh6dTzgLpfE+1jvtK0aznMnkTaogkWOVo9wWGVxkqQeGVT9QK5T/hH7P8A5+NT/wDBpc//AByt6NO/vDSOkorm/wDhH7P/AJ+NT/8ABpc//HKP+Efs/wDn41P/AMGlz/8AHK6bMZ0lFc3/AMI/Z/8APxqf/g0uf/jlNk0C0EbEXGp5AP8AzFLn/wCOUrMA1zXJZJ30vS5Nsy8XN0ORAP7q+rn9Op7A5ltbRWkCwwrtRffJJ7knuT1JqnoKhdA08gcvbo7HuzMoJJ9SSSSa0aS7gXPD/wDyPfhv/r6m/wDSWavZ68Y8P/8AI9+G/wDr6m/9JZq9nrmrfEJhXn/xY507w9/2GU/9ET16BXn/AMWP+Qd4e/7DKf8ApPPWQ4/EjkqtaB/yPfh3/rvN/wCk8tVataB/yPfh3/rvN/6Ty1TOqp8LPY6KKKk4ynqmqWejadLf38wit4hycZJJ4CgDkknAAHJJrgJJLzX9RTVdVjMSREmysSci3B43vjgykd+ig4Hck+IFo2peMNLgkvLqKK2tHuI0hk2gSFwu7p1AyAe2T61kf2RJ/wBBjVf/AAIH+FdFKnf3hpHR0Vzn9kSf9BjVf/Agf4Uf2RJ/0GNV/wDAgf4VvZjOjornP7Ik/wCgxqv/AIED/CsvxFYT2uhzyprGpk7o0IM/BDOqkcD0Jod0gLGsaw+ryyafp8rJZISlzdIcGQ944z6di34DnJFeKKOGJIokVI0AVVUYAHpRFFHDEkUSKkaAKqqMAD0FPpJAdJ8Ov+Ru1L/rwi/9GNXp9eYfDr/kbtS/68Iv/RjV6fXJU+JksKKKKgCC5sbS8eF7q1gnaBxJC0sYYxuOjLnofcVPUc88NtbyXFxKkUMSl5JJGCqigZJJPAAHenRyJLGskbq6OAyspyCD0INADqKKKAEJCqWYgADJJ7V474q8VS+OJpdK0qZ4/DUbFLq6jJDagwODHGR0iHRmH3ug4ya3fjNdTxeF9Ks4ppI4NR1eCzu1RtplhZXLISOQDtGcY446GubjjSGJIokVI0UKqKMBQOgA7CtqVNS1ZlVm46II40hiSKJFSNFCqijAUDoAOwp1FFdZynoXw9/5ELR/+uJ/9CNdNXM/D3/kQtH/AOuJ/wDQjXTV5zO9BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyHxE/5A+nf9hKH/2auvrkPiJ/yB9O/wCwlD/7NVR+JAeb3v8AyN15/wBeNt/6HPUlR3v/ACN15/1423/oc9SV2lBVT4bax4h0u0vn0mBNQtIJBJdaf0kIYY8yM9z8uCOe3HPFus7wLfN4b8daS8jbbbVLZI2+jfKD/wB9oP1rKrsdOHd1KNr6X+49q8O+KtK8T2pl0+f96n+tt5BtliPoy/16VtVyviLwPZ6vdDU7CZ9L1mPlLy34LH0cfxD9fw4rkfEvjXWtD8KaxpXiW3e01FrKZbPUrXPlTvsOMEfdb/OBXNbsZOCkrw+7r/wT0HU/Ffh7RnZNS1zTrSResc1yit/3yTmsKX4t+A4ThvEtqf8AcV2/kprH+H3w48IP4M0XUp9BtLq8urOKeaW6XztzsoJOGyByewrt4vC/h+AYh0LTIx6JaRj+QpGJoW1zDeWkN1buHhmRZI3AxuUjIP5GpaREWNFRFCoowqqMAD0FLQAUUUUAFcF468dS6bOfD/h9o5NdkQGWZhujsIz0dx0LkfdTv1PH3u9rwWElvE/ixmOW/tqYZPXAVMCmi6ceaVmavgHT4tO8b2CI0kkskF1JNPK26SaQ7Czux5JJr2WvJfCX/I/ad/163H/sletUMdRWkFeYah/yOviH/rtD/wCiI69PrzDUP+R18Q/9dof/AERHWtD4yEFFFFdpQUUUUAYHib/XaJ/1/N/6TzVFUvib/XaJ/wBfzf8ApPNUVZvdiCu2+Fv/AB5a/wD9hQf+k0FcTXbfC3/jy1//ALCg/wDSaCsa3wiZ3tc/4w8UxeE9GF39llu7ueQQWlrHwZpSCQCeiqApJY9AD9K6CvP/AIpfd8N/9hJ//SaauYIq7sefTW93P/aGsaxcC71i6hYSygYSJMEiKIH7qD8yeTz09t8Nf8iro/8A15Q/+gCvHr4gafck8Dym/ka9h8Nf8irpH/XlD/6AKbNaySskaleba/8A8j/qP/Xha/8AoU1ek15tr/8AyP8AqP8A14Wv/oU1aUfjRkiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzqvWb3EFdb8MP+Qn4h/7dv8A0F65Kut+GH/IT8Q/9u3/AKC9ZVvhEz0avPvif4h1Ow/srQdLnNnJq/nebeof3kMUYUsI/R23gBv4eSBnBHoNeV/FX/kcPB//AFyvv/QYa5RxV5JHPWVlbadZxWlpEsUEQwqL/nk+9b/gn/kodv8A9gq6/wDRttWRW14AgmvPGUmoQxs1naWU1rJP/D5rvCwQepAjOcdMj1qmdNXSB6nXD+Pv+Qp4e/66z/8Aouu4rh/H3/IU8Pf9dZ//AEXTp/EjkMiiiivQLCiiigDP13/kXtT/AOvSX/0A1jWv/HpD/wBc1/lWzrv/ACL2p/8AXpL/AOgGsa1/49If+ua/yqJbiJa1fB//ACP2nf8AXtcf+yVlVq+D/wDkftO/69rj/wBkrOr8DEz16vKPi1/yNvgn/fvf/RS16vXlHxa/5G3wT/v3v/opa4xw+JGTRRSW1te6vqS6VpSK12wDSSuMx2yf33/XC9WPoASLOxtJXZ6B8NP+RIh/6/L3/wBKpa66s3QdFt/D+i2+mWzyPHFuYySHLO7MXdj7lmJ4454rSqDie5wnjv8A5GPQP+uN3/7RrLrU8d/8jHoH/XG7/wDaNZddtD4BoKKKK2GFZPin/kUda/68Z/8A0A1rVk+Kf+RR1r/rxn/9ANKWwFGiiioES6Lpd1rHjG1tbTVbjTZBYXLme3+8VEkA2/Q5B/Cu1/4V1NL/AMfXjDxHKPRbvaPywa57wN/yUK3/AOwXdf8Ao23r1quSo/eZSqyirI4b/hVeiP8A8fF9q9z/ANdrwnP5AVLF8KPB0fLaY8h9XuZP6MK7Sioux+3qfzM43UPAHhWz0e9lh0W3DpbyMrMWYghTg8k1xGkaPph0mykOn2pdoEZmMKkklRznFet6z/yAtQ/69pP/AEE15jo//IEsP+vaP/0EV0YfVu4vaTe7ZKtjaIpCW0KgjHyoBXJf8I3onhuyN7qjm6cfdVuAzegXv+NdrXMeNrazl0lZJYy13vEdttPJYnpW8krXNqE5c3Ld2Zxh1ubUPENjcyARwwzp5UKcLGoYcAfzNetV5Ra+FtQury6jtGic2jhWZm2gv3A+hr1YZIGRg+lTTvrc1xnJ7qiLRRRWpxnPeIv+QppH+/L/AOgUyn+Iv+QppH+/L/6BTKz6sQU1/wDVt9DTqa/+rb6GgD1jwR/yIPhz/sF23/opa3awvBH/ACIPhz/sF23/AKKWt2uAkK8s+KskcXijwvLKyoiW9+xZjgKP3HOa9TrC1vwlpfiDWdJ1LUUklfTDIYYcjynL7eXGPmwUUgZxnrmgcXZ3Mn4aWVzbaDe3VxA8KX961zAsgwxj8uNASO2dhIB5wRXZ0UUA3d3CvING/wCPB/8Ar5uP/Rz16/XkGjf8eD/9fNx/6Oet8P8AEwRoUUUV2FBRRRQBzGqf8jWP+vEf+hmn0zVP+RrH/XiP/QzT6z6iCvTfh5/yIOj/APXE/wDoRrzKvTfh5/yIOj/9cT/6Eawr9BM6avFdZ/5KN4r/AOvi3/8ASaKvaq8dutD1PX/in4os7RXt7Yz2zXF8V4jX7NF8qZ+857dh1PYHBFU2lK7JfCVrPqXjawmtYy9vpjySXU38Ks0ToqA92+cHHYDnGRn12qWlaVZaJpsOn6fCIbeIcKOST1JJ6kk8knkmrtIUpczuFeUQ/wDIU1r/ALCc/wD6FXq9eUQ/8hTWv+wnP/6FW9D4hIsUUUV2FBRRRQBzmvf8jDpX/Xvc/wA4qSl17/kYdK/697n+cVJWfViCvQ/hl/yJ/wD2+3X/AKOevPK9D+GX/In/APb7df8Ao56xr7ITOwrz74tf8g3w7/2Gk/8ARE9eg1598Wv+Qb4d/wCw0n/oieuYcfiRydaHhG0n1PxrYz2sZa20t5Hupj91WaJ0WMHu3zgkdgOeozU0rSr3xPqT2Fg7Q28RAvL0DIh77EzwZCPwUHJ7A+uaXpdloumw6fp8Cw20QwqjknuST1JJ5JPJJptm1Wp9lFyiiikc5xvxD/499A/7Co/9J56wq3fiH/x76B/2FR/6Tz1hV2Yf4SkFFFFbjCmS/wCpf/dNPpkv+pf/AHTQBx+h/wDIv6b/ANesX/oAq/VDQ/8AkX9N/wCvWL/0AVfrJbCLnh//AJHvw3/19Tf+ks1ez14x4f8A+R78N/8AX1N/6SzV7PXNW+ITCvP/AIsf8g7w9/2GU/8ASeevQK8/+LH/ACDvD3/YZT/0nnrIcfiRyVWtA/5Hvw7/ANd5v/SeWqjMqKWYhVAySTgAV0HgXQbrVNVtfEcwaCwtt5slIw9wWUoZD6Jhjju2c8DGaZ01WlE9OoooqTkPPfF//I8Wn/YNb/0YKpVd8X/8jxaf9g1v/RgqlXbQ+ApBRRRWwwrF8V/8i7P/ANdIf/Rq1tVi+K/+Rdn/AOukP/o1amWzEVaKKKkDpPh1/wAjdqX/AF4Rf+jGr0+vMPh1/wAjdqX/AF4Rf+jGr0+uOp8TJYUUUVAHj/xYu7zVNYk0CS4Mek21il5LAnBuZGaQKHPdF8sHb3Jyc4GPTPDShfC2kKoAAsoQAO3yCub1rwG+v+Om1S+nT+xzZwxSWy53zujyHax7J84zjk9OBnPboixoqIoVVGAoGAB6U21ZALRRRSA80+NP/IF8Nf8AYw23/oElYVbvxp/5Avhr/sYbb/0CSsKuqhszmr7oKKKK3MT0L4e/8iFo/wD1xP8A6Ea6auZ+Hv8AyIWj/wDXE/8AoRrpq85negooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5D4if8gfTv8AsJQ/+zV19ch8RP8AkD6d/wBhKH/2aqj8SA83vf8Akbrz/rxtv/Q56kqO9/5G68/68bb/ANDnqSu0oKz9f0t5fCvg+9hyJZbaW3DL13qxeMD3JJFaFa9/A5+COjahCMzabLHdp+EhX/2bP4VjV6G2Hly1UejeGNYXX/DOn6mCN08QMgHZxww/76BrM+JMMU3w28RCWNHC2EzqGGcMFJB+oNZHw9nTTdZ1vw6p/wBHVxf2PvBKAcD2GV/Emtr4if8AJN/En/YOn/8AQDXOzOrHlm0jh/CGn+JvC/gzRNV0ORtV06exhmuNLlPzoWQFjEfqTx+hr0Lw54s0rxPAzWUxW4j4mtZRtliPfK/1HFQfD/8A5Jz4a/7Blv8A+i1qLxH4IsdbnXULWV9N1iPmK+tuGz/tAfeH6+9BSlGek9H3/wAzqKK8+j8b6l4WY2XjWzZSFPk6lapuiuMDoQOjH/IA5rQ8B+O4PGNtcJJGlvfwMS0IPWMn5WHr2B9/qKLMUqM0nLodjRRRSMgrwA3EVrr3i2aZtqDW5+gySSEAAHUkngAda9/ritC+HltpnivVdevbj7ZLc3r3drEUwluWABbHd+MZ7DpjJoRUJcruReCPCl1a3A17VlaK8eMpb2mf+PeNsE78dXOBnsvT1Nd1RRQJtt3YV5hqH/I6+If+u0P/AKIjr0+vMNQ/5HXxD/12h/8AREdbUPjBBRRRXaUFFFFAGB4m/wBdon/X83/pPNUVS+Jv9don/X83/pPNUVZvdiCu2+Fv/Hlr/wD2FB/6TQVxNdt8Lf8Ajy1//sKD/wBJoKxrfCJne1598VGCx+HGYgKNRckk8AfZpq9BrH1/wxpniYWC6pG0sVlc/aVizhZG2MuHHdfmPHfHORkHmBOzucD4V8Kt4nePUtSjK6IpDQQMMG9PZmH/ADy9B/F1Py/e9WAAAAGAOgoAAAAGAOgooHKTk7sK821//kf9R/68LX/0KavSa821/wD5H/Uf+vC1/wDQpq1o/GhIhoooruKCiiigDD8U/wDHlZ/9fsX86r1Y8U/8eVn/ANfsX86r1m9xBXW/DD/kJ+If+3b/ANBeuSrrfhh/yE/EP/bt/wCgvWVb4RM9Gryv4q/8jh4P/wCuV9/6DDXqlcR438FXvizxB4euYb1LWzsRcrdsCfOKyBMCPgjPyEZJGM5GTXKEXZ3OQ0XRbvxXfva2rvBp8Lbby9XrnvFGe7+p/h+uBXrun6faaVYQ2NjAkFtCu2ONBwB/U+/ejT9PtNKsIbGxgSC2hXbHGg4A/qffvVmgcpOTuwrh/H3/ACFPD3/XWf8A9F13FcP4+/5Cnh7/AK6z/wDourp/EiTIooor0CwooooAz9d/5F7U/wDr0l/9ANY1r/x6Q/8AXNf5Vs67/wAi9qf/AF6S/wDoBrGtf+PSH/rmv8qiW4iWtXwf/wAj9p3/AF7XH/slZVavg/8A5H7Tv+va4/8AZKzq/AxM9eryj4tf8jb4J/373/0Uter1538SPDGt+IfEPhWXSIY9lq9yLi4lYbIA6KoYjOW6HAHUjBIzmuMIuzTOVtra91fUl0rSkVrtgGklcZjtk/vv+uF6sfQAkes+H/D9l4b00WdmGZmO+aeTmSZ+7MfX26AYAwBR4f8AD9l4b00WdmGZmO+aeTmSZ+7MfX26AYAwBWrTbKnNyYUUUUiDhPHf/Ix6B/1xu/8A2jWXWp47/wCRj0D/AK43f/tGsuu2h8BSCiiithhWT4p/5FHWv+vGf/0A1rVk+Kf+RR1r/rxn/wDQDSlsBRoooqBGz4G/5KFb/wDYLuv/AEbb161Xkvgb/koVv/2C7r/0bb161XJV+NksKKKKzAo6z/yAtQ/69pP/AEE15jo//IEsP+vaP/0EV6drP/IC1D/r2k/9BNeY6P8A8gSw/wCvaP8A9BFdOH3Y0Xa5V5l1PxJPeSc2GjoxHo0uMk/hj9BWt4g1M6VpEsyczv8Au4VHUuen+P4Vi6janQ/A5s15ubgqjnuzufm/TI/Ct5M6aMevfT/Mv+D4WTQhcSf626led/xOP5Ct+obO3W0soLZfuxRqg/AYqaqSsrGVSXNJsKKKKZJz3iL/AJCmkf78v/oFMp/iL/kKaR/vy/8AoFMrPqxBTX/1bfQ06nWOn3uv6n/ZWlgCQAG4uWGUtUPc+rH+Fe/U4AJpNpK7A9U8Ef8AIg+HP+wXbf8Aopa3aqaXp8Ok6TZ6bbljDaQJBGXOWKooUZ98CrdcJIUUVy+rfEbwfol+1jqGv2kN0pw8YJcofRtoOD9aAOooqvY39nqllHeWFzFc20oyksThlYexFWKACvING/48H/6+bj/0c9ev15Bo3/Hg/wD183H/AKOet8P8TGjQooorsKCiiigDmNU/5Gsf9eI/9DNPpmqf8jWP+vEf+hmn1n1EFem/Dz/kQdH/AOuJ/wDQjXmLMqKWZgqqMkk4AFenfD1WXwDo25SMwbhkY4JJB/EEGsK/QTOmoopCQoJJAA5JNc4haKpaXrGna3atdaZeQ3cCuYzJC25dw6jNXaACvKIf+QprX/YTn/8AQq9XryiH/kKa1/2E5/8A0Kt6HxDRYooorsKCiiigDnNe/wCRh0r/AK97n+cVJS69/wAjDpX/AF73P84qSs+rEFeh/DL/AJE//t9uv/Rz155XoXwy/wCRP/7fbr/0c9Y19kJnY1y/jjwpP4tstMtYL77GLW/S5klC5bYI5EIXtu+fgngdeeldRRXMIp6Xpdloumw6fp8Cw20QwqjknuST1JJ5JPJJq5RRQAUUUUAcb8Q/+PfQP+wqP/SeesKt34h/8e+gf9hUf+k89YVdmH+EpBRRRW4wpkv+pf8A3TT6ZL/qX/3TQBx+h/8AIv6b/wBesX/oAq/VDQ/+Rf03/r1i/wDQBV+slsIueH/+R78N/wDX1N/6SzV7PXjHh/8A5Hvw3/19Tf8ApLNXs9c1b4hMK8++LTKmmeH2YhVGsKSScAD7PPXoNZOv+GtM8TQ2cGqwGeG0ulukiLYVnVWUBh3XDHjoe/HFZAnZ3PP/AAp4UbxO8epalEV0RSGgt3GDens7D/nl6D+Lqfl+96sAAAAMAUAAAADAFFASk5O7CiiigR574v8A+R4tP+wa3/owVSq74v8A+R4tP+wa3/owVSrtofAUgooorYYVi+K/+Rdn/wCukP8A6NWtqsXxX/yLs/8A10h/9GrUy2YirRRRUgdJ8Ov+Ru1L/rwi/wDRjV6fXmHw6/5G7Uv+vCL/ANGNXp9cdT4mSwoooqACiiigAooooA80+NP/ACBfDX/Yw23/AKBJWFW78af+QL4a/wCxhtv/AECSsKuqhszmr7oKCcDJ6UE4GT0q/wCGvDT+LZFu7tWTQEPA6G+I/wDaXv8AxfTrpOairszjFydkdn8PefAOjHsYMg+oJODXTU1EWNFRFCooAVVGAB6CnVwnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXIfET/kD6d/2Eof8A2auvrkPiJ/yB9O/7CUP/ALNVR+JAeb3v/I3Xn/Xjbf8Aoc9SVHe/8jdef9eNt/6HPWj4e8PXHi67ZVZ4dGhYrcXKHDTMOsUZ/RmHToOcleuUlFXZQeHvD1x4uu2VWeHRoWK3Fyhw0zDrFGf0Zh06DnJX0/VdFt5/CV5otrAkULWjQQxIuFT5cLgexxWjaWlvY2kVpaQpDbwqEjjjXCqo6ACpq5JScndiTadzxrTtQ+x6f4J8WA4SIHSb4+iZKqT9ME/lXf8AxE/5Jv4k/wCwdP8A+gGuR0nRhqGjeN/CG0b4LxprYHtv+aP9UH51cu9ZOu/AfVLuRibhdKnhnz13ohU5+uAfxoZ04hX1XT8nqjpfh/8A8k58Nf8AYMt//Ra10dc58P8A/knPhr/sGW//AKLWujqTlOO8f+EdR8X2EFraanHaxRMXaF4yRI3YlgeMc8Y715jbeA/HHg/V4dU0+0S5eBs5tpQwcd1KnDEEe1e/0U1Kx0U8TOEeXdFLSdQ/tTTILs281s8i/PBOhV427qQff8+tXaKKRg99Aoorwn4u+M9U1KK5tPD08kOlaVcRx395E5XzZ2OBEpHUL1P+cgj3aio4CTbxE8nYP5VJQAV5hqH/ACOviH/rtD/6Ijr0+vMNQ/5HXxD/ANdof/REdbUPjGgooortKCiiigDA8Tf67RP+v5v/AEnmqKpfE3+u0T/r+b/0nmqrLKyvFBBC9xdTt5cFvH96VvQeg7kngAEms27NiCWVleKCCF7i6nby4LeP70reg9B3JPAAJNeq+C/Dk3hzR5Y7udZb27n+03Hl/cRyiptXuQFRRk9Tk8ZwK/g7wcugI19fMlxrE67ZJV+7CvXy489F9T1YjJ7AdXXJUqc3oIKKK47x34oudJgttF0RRN4h1QmK0j/55D+KVvRVH61mI66OaKUuI5UcodrBWB2n0PpT68l+BdpLY2vim0nna4mh1Z43mbrIwGC34161QAV5tr//ACP+o/8AXha/+hTV6TXm2v8A/I/6j/14Wv8A6FNWtH40NENFFFdxQUUUUAYfin/jys/+v2L+dV6seKf+PKz/AOv2L+dU2aaS4htLSBrm9uG2wQIeWPck9lHUk8AVnJ2bbEDNNJcQ2lpA1ze3DbYIEPLHuSeyjqSeAK9V8IeFx4asJfOm+0ahdEPdSjhcgYCoOyjoO55J60zwj4Rh8OW7zzutzqtwo+0XIHAHaNB2QfmTyfbpa5KlTm9CQqhrOs6f4f0ubUtUuktrSEZeRv0AA5JPoKv15x8atOe88ExXSzW6pp95HdPDcSiNZ1XIKZPGTngd6zAs6X8YfCup6jb2bNfWRujtt5r22Mccx7bW/wAcV31eA+NfiBpXxE0LTPDemWE1nd3txEyXGoBYYrfHUqxPJ7DHX9K96t4zDbRRM5cogUse+B1oAkrh/H3/ACFPD3/XWf8A9F13FcP4+/5Cnh7/AK6z/wDourp/EgMiiiivQLCiiigDP13/AJF7U/8Ar0l/9ANY1r/x6Q/9c1/lWzrv/Ivan/16S/8AoBrBilZbe0hhhee6nCxwQRjLytjoP5kngAEnis5OzESyysrxQwwvPdTt5cEEYy8reg/mSeAASeK9M8HeD10FGv79kn1idNski8pCnXy489umT1YjJ4AAPB3g5dBQ39+yT6xOu2SReUgXr5cee3qerEZPGAOsrkqVObRbCCo7i4htLeS4uJUihjUs8jsAqgdSSelSVzvirwbp/jAWUOqzXRs7aQyPaxSlEnPGA+OSBj9azEVvBnjyw8bz6v8A2bC4trCdYUnZv9eCCdwGOBxSeLfHln4WurXTorK61TWLzJt7C0XLsB/ET2HvXMfCK2gsvEHjq1tokhgi1UJHGgwqqNwAArn/AO3dUT44+Jk0fSF1PWPJitrXzn2RW8QUF2ZvTOOB1zQB3nhv4ipq/iA+H9X0W90PVzGZYoLohlmUdSrDGT1/I129eW6d4hvG+IGmaX488Oafbauys2lajaMWjJx8yjJJB/zjmvUqAOE8d/8AIx6B/wBcbv8A9o1l1qeO/wDkY9A/643f/tGsuu2h8BSCiiithhWT4p/5FHWv+vGf/wBANa1ZPin/AJFHWv8Arxn/APQDSlsBRqK4uI7aEySE4yAABksTwAAOSSeAB1ouLiO2hMkhOMgAAZLE8AADkkngAda7zwZ4Mkt5o9c1yIfbsZtbU8i1B7nsZCOp/h6DuTjOaiiSTwL4TudPmOuaqDHfywmKG1B4t4mKsQ2OrkqpPYYwO5PcUUVyNtu7EFFFFICjrP8AyAtQ/wCvaT/0E15jo/8AyBLD/r2j/wDQRXp2s/8AIC1D/r2k/wDQTXj82pjSvB1tcjmU20aRL6uVGP8AH8K6MO7XLhFydkQf8hzxd/es9L/Jpj/hj9Pen63/AKZ4k0bTxyqO1zIP937v6gir/h/TDpWkRQvzO/7yZj1Lnr/h+FUNM/03xhqt51S2RbZD79W/UH863tp6nTzLmbW0V/wDo6KKK0OYKKKKAOe8Rf8AIU0j/fl/9AplP8Rf8hTSP9+X/wBAosLC+17U/wCy9LwJQA1xcsuUtUPc+rH+Fe/U4AJrKTSu2ILCwvte1P8AsvS8CUANcXLLlLVD3Pqx/hXv1OACa9e0LQrHw7piWFhGQgJZ5HOXlc9Xc92P/wBYYAAo0LQrHw7piWFhGQgJZ5HOXlc9Xc92P/1hgACtKuSc3JkhRRRUAQ3UUk9pNFDN5MrxsqS4zsJHBx3x1rj/AAr8P9D8H+GpbfUUs76Ul5by/uYFBlBJOW3ZwAO2fWuzmmjt4ZJpnVIo1LOzHAUDkk14pPrR+LOqSw3OsW+j+DLaXaY2uFjn1Ag98nIT/PJ6AGx8FEUr4on05HTw/LqTHTlOcbRncVz2+7+VerVm6I2jRafHY6JLZm1tVCLHayKwQduhrSoAK8g0b/jwf/r5uP8A0c9ev15Bo3/Hg/8A183H/o563w/xMaNCiiiuwoKKKKAOY1T/AJGsf9eI/wDQzTmZUUszBVUZJJwAKZqzKninczBVWwBJJwAN5roPCXhJvEjx6pqkRXRlIe3tnGDeHs7j/nn6L/F1PGAcZzUdWIPCXhJvEjx6pqkRXRlIe3tnGDeHs7j/AJ5+i/xdTxgH1cDAwOlAGBgdKK45ScndkhXnfjfVbzxFq6+BdBmaOWZPM1W8T/l1t/7oP99un0PvXoFwJTbSiAgTbD5ZPQNjj9a8U0Hwt8WvDcd6bM+HnmvJmnubid2eSVj6nHbsKQG/8Bo1h+H88S52pqM6jPoNteoV4p8Bx4n+wz+abH+wPtM+8LnzvPyucf7Ne10AFeUQ/wDIU1r/ALCc/wD6FXq9eUQ/8hTWv+wnP/6FW9D4hosUUUV2FBRRRQBzmvf8jDpX/Xvc/wA4qSl17/kYdK/697n+cVTaRpF74n1JrCwcw28RAvL0DIhHXYnYyEfgo5PYHKUlG7Yg0jSL3xPqTWFg5ht4iBeXoGRCOuxOxkI/BRyewPsGlaXZ6LpsOn2EIhtoRhVByeuSSTySSSSTySc0aVpVloumw6fp8AhtohhVHJJ6kk9SSeSTyTVyuSc3JkhXJ/EvWdQ8P/D7VtR0vIu44wEcDJj3MAW/AHNdZXC/FnxFd+HfBTtYpEbm9nSzVpkDogfOSQeDwD145qAOE1XwTYaN8OB4ysfFGpjWkt0ulvzeErNIcHZjuCTjHX1zXrvhTUbrV/Cek6jex+XdXNrHJKuMfMVGeP1ry/UPgbpWneFnurTU7s6pZxm6V5tjW7SKNxzEV2hTj/8AXXoPw98RTeKvA2mavcxrHPKhWQIMKWUlSQOwOM0AdPRRRQBxvxD/AOPfQP8AsKj/ANJ56wq3fiH/AMe+gf8AYVH/AKTz1hV2Yf4SkFFFFbjCmS/6l/8AdNPpkv8AqX/3TQBx+h/8i/pv/XrF/wCgCrzMqKWZgqgZJJwAKz9FZU8OaczMFUWkZJJwANgrrfCXhJvErx6pqkRXRlIa3tnGDeHs7j/nn6D+Lqfl64OajG7JJ/Anh661LU7TxJcBoLG2LPYoRh7hmRkMhz0TazbR1Oc9MZ9QoAwMDpRXJKTk7sRDd3UNlZz3dw2yGCNpJGwThQMk4HsK8YvPiNrniDx94VXT7W803w3c32yOWUeW19jqSP7nIwO/6D2xlDqVYAqRggjg15j8RwB8Q/h4BwP7Qf8AktIDpfiF4ql8I+FZL61iWa/mkW2tI26NK5wM/Tk/hXI3nhD4iafo/wDbVt4zvb3XI1Er6eY1+zyHvGq9Pxx+VN+PJu00bw89o4jlXVU2ORkK+DtJ/GmeI/hXb6V4cu9esdc1YeI7KFrk6hJdMTKyjcQR0AODwP1oA9R0m5ubzSLS5vbVrS6liVpoG6xvjkfnVyuf8Da5N4k8EaTq9yoE9zADJgYBYEqT+JGa6CgDz3xf/wAjxaf9g1v/AEYKpVd8X/8AI8Wn/YNb/wBGCqVdtD4CkFFFFbDCsXxX/wAi7P8A9dIf/Rq1tVi+K/8AkXZ/+ukP/o1amWzEVajnnitoHmmcJGgyzHtRPPFbQPNM4SNBlmPaux8G+DZbmeHXddgKbCHsrGQf6v0lkH9/0X+H/e+7lOaihFv4e+H760e51vUIzbPeRJHDasMOkYJIZ/Rjn7vYdecgd3RRXI3d3YgooopAecfEL4hXmki+0Pw3p9xea1FbmaeYR4is49ud7MeCccgf/qrc+Gl9dal8OdEvL64kuLmWAtJLK25mO48kmr/jBVXwXrzBQC1jMSQOvyGsj4Tf8ks8P/8AXuf/AENqAOzooooA80+NP/IF8Nf9jDbf+gSVhE4GT0rd+NJxovhonp/wkFt/6BLVHw14afxbIt3dqyaAh4HQ3xH/ALS9/wCL6dd6U1GLbMakXKSSDw14afxbIt3dqyaAh4HQ3xH/ALS9/wCL6dfV0RY0VEUKigBVUYAHoKERY0VEUKigBVUYAHoKdWUpOTuzSMVFWQUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcx46sL7UNFthp9nJdzQXsUzQxuisVGc4Lso7+tdPRTTs7geQ2fgjW9f8VTT6lY3Gk6U1tDHKZJYzNNtaQlE8t22g7xliQfTk5HrFpaW9jaRWlpCkNvCoSOONcKqjoAKmopyk5O7AKKKKkDhV/4lfxmcdI9X00N9ZIzj/0Ff1rl9f8A+JBF8QdAb5ba+02bUrQdslCHA/H9FrqPH/8AxL9a8K64OBbah9nkb0SUYP6A/nWL8ctOlHhca5bDEtrHLbTEd4pUKnP4nH/Aqo6k7pX6q3zWx2Pw/wD+Sc+Gv+wZb/8Aota6Ouc+H/8AyTnw1/2DLf8A9FrXR1JyhRRRQAUUUUAcR8VNc1jQ/BsjaHaXE95dSC3D28Zd4VIOXAHfAwPc1414p8U2cXwxh8M2PhTXNPiinika6vINokcNlix/vMa+nK5rx14S/wCE18Nto/277HmaOXzfK8z7pzjGR1+tAE3g7xCfE2gJfnTbzT9rmLybtNrnAHzY9Dmt+mxp5cSJnO0AZp1ABXkmu6rp+neOdfjvbyC3d5IWUSuFLDyEGRnqMgj8K9boqoS5XcDxv/hJdD/6C1l/3+Wj/hJdD/6C1l/3+WvZKK2+sPsO543/AMJLof8A0FrL/v8ALR/wkuh/9Bay/wC/y17JRR9YfYLngeu6ta6ld6Lb6VKmo3Zvjst7ZwztmCUfgMkZJ4A5Neo+DvBy6AjX18yXGsTrtklX7sK9fLjz0X1PViMnsB1dFZzqOQrhRRRWYBXhWm3HxF0rxXq2uz+BW1K/u3Mcc8l0qiGAH5UQZOB3PrXutFAHhfwd1nxE3iXW7ZvD4WyutTlkvrjzh/osmCdmP4ucDPvXulYPhvwnYeF5dUkspbmQ6ldtdzecyna56hcAYH1z9a3qACvNfFCXVt43vLgabqM8E1lbqkttaSTKSrS5GVBwRuH516VRVRk4u6A8m+2T/wDQG1v/AMFc/wD8TR9sn/6A2t/+Cuf/AOJr1mitfrEh3PJvtk//AEBtb/8ABXP/APE0fbJ/+gNrf/grn/8Aia9Zoo+sSC54jrseqalBZ29hoOry3Bu4iolsZYkGD1Z2UBR6k16T4R8Iw+HLd553W51W4UfaLkDgDtGg7IPzJ5Pt0tFZzqOW4goooqACvKfjOohuPCmo6hE02g2mohr9Qu5QDjaWHcfe/wAmvVqjnt4bqB4LiGOaGQbXjkUMrD0IPBoA8t+Kvinwlqfw6urODUbDULq5CrYwW0iySeZkbSAvK4/D0r0DwxDeW/hXSYdRLG8jtIlm3HneFGc+9VtO8D+FtIvhe6foGn29yDlZUgXcp/2fT8K36ACuR8baTqmoTaRc6ZaLdG1lkMkZlWM4ZMAgng8111FNOzugPMv7K8Uf9C9/5Oxf40f2V4o/6F7/AMnYv8a9NorT28x3PMv7K8Uf9C9/5Oxf40f2V4o/6F7/AMnYv8a9Noo9vMLnlGpaF4qvNLvLWPw+A80DxqTexYBKkevvXUeCfBa+HbZbzUGS41mWIJJKv3IV/wCecee3qerHk8YA6+iplUlLcQUUUVABRRRQB5j8K/8AkavH/wD2F/8A4qs7VLuP4c/F6+8Q6pDKuha3brG14kZcQSrjhsc84/X2r1+myRpLGySIrowwVYZBoA8gutatfiV8TvDZ8O+ZcabocjXV1feWypuOMIMgEngfn7V7DUcMENtGI4IkijHRUUKPyFSUAcH8QPNi1jQ7oWt5NCkdyjtbWsk20t5eMhFJGdp/Kuf/ALTX/nw1j/wU3P8A8br1yitYVXFWQ7nkf9pr/wA+Gsf+Cm5/+N0f2mv/AD4ax/4Kbn/43XrlFV9YkFzyP+01/wCfDWP/AAU3P/xus7X7qS98Oana2+m6w881pLHGn9lXI3MUIA5j9TXttFDryYXOD8GeDJLeaPXNciH27GbW1PItQe57GQjqf4eg7k95RRWLbbuxBRRRSAKKKKAKupQvc6VeQRDMkkDoozjJKkCvCrKy1nV9WtLNNCvJ10RES5gjlgys+MDJMgUgY7EnjkV7J4t15PDfhq71E4MqrsgQ/wAch4Ufnz9AareBtBfQPDUMVzk39yTc3bt1MjckH6cD8KuMnFaG0Pci5/JfqcbcLrlrbS3E/hbU0iiQu7ma1wqgZJ/13pWL4Rstc/sU3cXh2/uheSvP50UluFbJxwHlVu3cV6F8S79rHwLfJFkzXe21jUfxFzgj/vndXQ6RYLpejWWnpjbbQJFkd9oAzV+2luF7UvV/l/w5519m8Q/9Cnqn/f61/wDj1H2bxD/0Keqf9/rX/wCPV6lRR7eZlc8t+zeIf+hT1T/v9a//AB6j7N4h/wChT1T/AL/Wv/x6vUqKPbzC545f+GfFOuarpkcOi3Gmxo7+dd3csDLEpXGQqSMWPoMYyRkgZr1HQtCsfDumJYWEZCAlnkc5eVz1dz3Y/wD1hgACtKis5TctxBRRRUgFFFFAFa/sLbVNPuLC8jMltcRmOVAxXcpGCMggj8K4j/hSXw8/6F7/AMnbj/45XoFFAGB4Z8FeHvB63C6Dp/2QXJUy/vpJN2M4++xx1PSt+iigArzuLwJr9r5sdvq2mmEzSSJ5lpIWAZy2DiTHevRKKqMnHYDz/wD4Q3xL/wBBXSf/AAEk/wDjlH/CG+Jf+grpP/gJJ/8AHK9Aoqvaz7juef8A/CG+Jf8AoK6T/wCAkn/xyj/hDfEv/QV0n/wEk/8AjlegUUe1n3C55za/DKe68RRal4g1C2u7WKIILK3t2RJWDbgZCzHKj+70PGeOD6MBgYHSiiobbd2IKKKKQBQRkYNFFAGZoXh7S/DVi9lpFr9mt3laZk8xny7dTliT2rToooAK8xn0XxFbavqhi0KW5hnvZJopY7mFQyscjhmBH5V6dRVRk4u6A8w/s/xN/wBCzc/+Bdv/APF0f2f4m/6Fm5/8C7f/AOLr0+itPbzHc8w/s/xN/wBCzc/+Bdv/APF0f2f4m/6Fm5/8C7f/AOLr0+ij28wueP3Hg7xPr2v6d5lg2lWcccy3F088UjKrFOEVWPzHacE8Drz0PqmlaVZaLpsOn6fAIbaIYVRySepJPUknkk8k1corOUnJ3YgoooqQCsbxR4asPFugXGj6ireTLgh0OGjYdGHuK2aKAPLZPh142u9P/sO98ftJopXy3CWSid4/7pfOenGcn8a9D0bR7PQNHtdK0+Py7W2jCRqTk49Se5J5q/RQAUUUUAcT8S54rXT9EuJ3EcMeqAu7dFBgmHJ7ckD8a5L/AISTRP8AoKWv/fwV7HRWsKrgrIdzxz/hJNE/6Clr/wB/BR/wkmif9BS1/wC/gr2Oir+sPsFzxz/hJNE/6Clr/wB/BTJfEmi+U/8AxNLX7p/5aCvZqKPrD7Bc8b+HPg6XX9G0vUNYgaPSYreIw2rjBu2Cj53H/PPPQfxdT8uM+yAYGB0oorBtvcQUUUUgCuO8W+E7/XvFXhXVLWW2SDSbppp1lZgzKcfdwCCeO5FdjRQBz/jTwpbeM/DU+kXErQsxEkM6jJikX7rf57GuHvNA+KmtaOfDWo32hw2DqIrjUod5mli7jb0yR14H1r1iigCjo2k22haLZ6VZgi3tIliTPUgDqfc9avUUUAeb+N7y2tPG1mbm4hhDac4UyOFz+8HrWV/bOl/9BKz/AO/6/wCNerz2drdFftFtDNt+75iBsfTNQ/2Rpv8A0D7T/vyv+FbQrOKtYdzy7+2dL/6CVn/3/X/Gj+2dL/6CVn/3/X/GvUf7I03/AKB9p/35X/Cj+yNN/wCgfaf9+V/wq/rD7Bc8u/tnS/8AoJWf/f8AX/GsbxXrOmf8I3ckahath4iQsqk4Eik8A17V/ZGm/wDQPtP+/K/4Uq6Xp6OHSwtVZTkEQqCD+VJ4htWsFzhPBvg2W5nh13XYCmwh7KxkH+r9JZB/f9F/h/3vu+jUUVg227sQUUUUgCiiigDO1+wl1Xw7qWnwMiy3VtJChckKCykDOAeOaoeB9CuvDXgvS9GvJIZLi0i2O0JJQncTwSAe/pXQUUAFFFFAGN4k8LaV4stLW01eFpoLa6S6RA2AzqCAG9RhiCK10RY0VEUKigBVUYAHoKdRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIw3KVOcEY4ODXllg95J8bdR8PvquptpcGnJcRwG9k4c7ec5yep4zXqleWab/ychrH/YHT+aUAep0UUUAcp8SbA6h4B1RVH7yBBcKR22EMT+QNU/F11HrXwY1S9cBhcaQ0+PRtm79CP0rsbu2S8s57WUZjmjaNvoRg/wA68rsbl5PgH4gspj++0+2vLWT2IBP8mAp9DVa0vR/n/wAMb/wf1hdW+GulKSPNs4xayD02gbf/AB0rXd15B8MCfD+paTZH5bXXdFtrmL085IxuH1I3E/UV6/QxVIpPTZhRRRSMwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorH8Ua7F4b8OXmpyYLRJiJD/HIeFH5/pmgcU5OyOYv/wDirviRb6cPn0vQQLi4/uvcH7q/h/RhXf1zHgPQpdE8No15ltRvWN1du33jI/OD9BgfXNdPTZpVavyrZHC+Mf8AiaeNvCmhjlFna/mHbEY+XP1IYV3VcLof/E2+KviDUvvRadbx2ERPqfmb8iG/Ou6oYVdFGPZfnqFFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAIyMV5Wz3n/AAu8eHf7V1P+yjpn2nyPtsn+szjO7O78M16pXljf8nKL/wBgT/2agDofFUOp+GtCuNb0O9upXsl86azu5mmjnjH3hlsspxkgg9uQa3/DuuWviXw/ZaxZE+RdRhwD1U91PuDkUzxTLHD4S1iSYgRrZTFs+mw1x/wOt57f4Wad5wIEkkskYP8AdLnH9aAPRqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARs7TtALY4BOBmvPrTwt4lg+KF54teDSTBc2a2v2cXsm5cbfmz5OD06V6FRQAUUUUAFeP6x/xLbf4oaSeFlsnvoh674zvP5kD8K9gryD4tg6Zqk96Plj1LQryzc+6oXH6lRTRrS1Uo91+WpLdW0sHwk8G+IbVc3WjW1pcDH8UZRQ6/Q/Ln2Br1W1uYry0huoG3QzRrIjeqkZB/I1zPgyzh1D4VaHZXC7objSIYnHs0QB/nVX4aXk39gXGiXbZvNHuXtHz3UElT9OoH+7R0H8VP0/J/1+J2tFFFIxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuA1f/irviJaaMvz6ZomLu8/uvMfuIfp/wDFCuq8Sa3D4d8P3mqTYIgTKKf43PCr+JIrK8AaJNpPh0XN9ltT1Fzd3bN13NyAfoO3qTTXc2p+7Fz+SOqqK5njtbWW4lOI4kLufQAZNS1yfxJ1BtP8Caj5efOuVFtGB1YucEf987qSM4R5pKPcq/C6CQ+FpdUnGJ9Uu5btyevLYH8ifxrtqo6Lp66Todjp64xbQJEcdyAAT+dXqbHUlzTbCiiikQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAc4461543hbxMfiiPF4g0jyRY/ZPs/wBuk3dc7s+Tj8K9DooA5PX9D1rxXYHSb5rTTtNmI+1G1naaWZAc7ASiBAe5547V0tnZ2+n2UFnaRLFbwII4416KoGAKZp2pWWrWa3dhcJcW7EhZEOQSDg1aoBq2jCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x+O1gbj4eyXiD57SXJP+wylSPzK16dXKfE23S6+GXiKN+gsZJPxUbh+oFBUJcsrlj4f/8AJOfDX/YMt/8A0WtY0/8AxTvxagm+7aa/b+U/p58fQ/lgfVjWj8MrpLz4Z+HZU6LYxxfig2H9VqL4k6dLdeFGv7Xi90uVb2Fh1Gw/N+mT+Apoul8XK+uh2FFU9J1GLV9ItNRg/wBXcxLKB6ZGcfh0q5SM2rOzCiiigQUUUUAFFFFABRRRQAVFc3MFnbS3N1NHDBEpeSSRgqoo6kk9BRdXUFlay3V1MkMESl5JJGwqqOpJrzq+vp/Ft0lxcRvDo0TB7W0cYadh0llHp3VD06nnAWoxcnZAdT/wnnhP/oYdO/7/AK0f8J54T/6GHTv+/wCtYNFbew8x2N7/AITzwn/0MOnf9/1o/wCE88J/9DDp3/f9awaKPYeYWN7/AITzwn/0MOnf9/1rT0vWdN1u2e40u/t7yFHMbPBIHCuACVOOhwRx715RrmuSyTyaXpcm2ZeLm6HIgH91fVz+nU9gej+ElvFa6XrsMK7UXVPXJJ+zQEknuSeSaznT5VcR6FRRRWYBRRRQAUUUUAFVdR1G00mwmvr6dYLaFdzu3b2HqSeAByScUajqNppNhNfX06wW0K7ndu3sPUk8ADkk4rz6ee78R38epalE0FrC26xsG/5Z/wDTST1kI6DooOBzk1UIOTsgN8eP7AgEaXrOD/05n/Gj/hP7D/oF6z/4Bn/Gsyit/YodjT/4T+w/6Bes/wDgGf8AGj/hP7D/AKBes/8AgGf8azKKPYoLGn/wn9h/0C9Z/wDAM/41d8NeMNL8VvfJp32gPYyCOdZoimCc9Ox6Ee2K8y1rWpNRmk0zTJWSBCUurtDg57xxn19W7dBz06L4VQx297r0MKKkaC2VVUYAG16znTUVdAelUUUVkIKKKKACiiigAqG7u7ews5ru7mSC3hUvJJIcKqjqSaLu7t7Czmu7uZILeFS8kkhwqqOpJrzu9vbjxVeR3d3G8GlQsHtLNxhpGHSWUevdUP3ep+b7tRi5OyA0x451K4zLZ+HC1sxzE1xeCJ2XsSmw7c9cE59cHil/4TPW/wDoWoP/AAZf/a6rUV0exiOxZ/4TPW/+hag/8GX/ANro/wCEz1v/AKFqD/wZf/a6rUUexiFiz/wmet/9C1B/4Mv/ALXTNA+Icus+Lz4fm0dYGELu1xHd+aquuPkPyjnByeeOPXjkdc1yWeeTS9LlKOvy3V2v/LH/AGF9X/8AQfrgVJ4Ht4rXxvpcMKBI1tbjA/745PqfeonTSV0B7HRRRWAgooooAKKKKACiikJCqWYgADJJ7UABIVSzEAAZJPauX/4WDoTEmEahcR5IWWDT5njfHdWC4Ye44NYesaw/i+RrW1Zk8PqcSSDg35HYf9Mff+P/AHfvSqoVQqgBQMAAcAVtCldXY7Gv/wAJ/o//AD76v/4LJ/8A4mj/AIT/AEf/AJ99X/8ABZP/APE1k0VfsF3Cxrf8J/o//Pvq/wD4LJ//AImj/hP9H/599X/8Fk//AMTWTWDruutZv/Z+n7ZNRdcktysCn+N/6L3+mTSdFdwsd3o/jbRNc1qTR7SS5W/jgNw0M9rJEfLBAz8wHdhXRV498PbVbbx/CAzSSPpt08srnLSMZbfLE/5x0HFen6/rEGgaFeapcYKW8ZYLn7zdFX8SQKxlGzsCTbsjkte/4q3x/Y+H1+bTtKxe3/o0n8CH8/yJ9K7+uS+Hujz6foLahf5Op6rIbu5YjkbuVX8AenYk11tJmlVq/Ktl/TCuF8a/8TTxh4U0IfMhuWvpl/2YxkZ+vzCu6rhdH/4m/wAWdcv/AL0WmWsdlGf9pvmb8iGH40IKOjcuy/4B3VFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOH+En/JPbP/rrL/6Ga7iuH+En/JPbP/rrL/6Ga7im9zWv/Fl6hRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5n4if8AJN/En/YOn/8AQDXTVzPxE/5Jv4k/7B0//oBoA5X4E3zTeAhYyZD2sgIB7I6hh+u6vTZY0mieKRQ0bqVZT0IPUV5L8LP+JZrNnaH5Y9U8PWV2o7FkRUP/ALMa9dps1qr3rrrY4X4cSvpyav4WnYmXSbphFu6mFyWU/wAz+Iruq4PXf+Kf+JmjayPlttVQ6fcntv6oT7k4H0U13lDCtq1Pv/TCiiikZBRRRQAUUUUAFRXV1BZWst1dTJDBEpeSSRsKqjqSalrynxhqGt6r4tudOjt7KTStMaIrBLcOnnSlFfe4CHIXcML0yMnJxioxcnZAXL6+n8W3SXFxG8OjRMHtbRxhp2HSWUendUPTqecBbdYP2/xF/wBA/S//AANk/wDjVH2/xF/0D9L/APA2T/41XXGKirIo3qKwft/iL/oH6X/4Gyf/ABqj7f4i/wCgfpf/AIGyf/GqoDermdc1yWSeTS9Lk2zLxc3Q5EA/ur6uf06nsDV1jWNfijtrZ4bK0+2TGDz4J2keP5GckBkAzhCM9iRwarW9vFaQLDCu1F98knuSe5PUmluAW9vFaQLDCu1F98knuSe5PUmu7+Fv/Hlr/wD2FB/6TQVxNdt8Lf8Ajy1//sKD/wBJoKyrfCJne0UUVzCCisy48Q6Va+ILPQZbxRql3G0sVuqlm2KCSzYGFHBwWxkggZrToAKq6jqNppNhNfX06wW0K7ndu3sPUk8ADkk4q1XlnjZNS1Px0LdNS8m10+1hmht2hDp5rtIDIeRlgEAGemTjBNVGLk7ICxPPd+I7+PUtSiaC1hbdY2Df8s/+mknrIR0HRQcDnJq5XPeRrn/Qbj/8A1/xo8jXP+g3H/4Br/jXZGPKrJFHQ0Vz3ka5/wBBuP8A8A1/xo8jXP8AoNx/+Aa/409ewHQ1yWta1JqM0mmaZKyQISl1docHPeOM+vq3boOelbXm1y3solbWQY550hkEdsEbYx5wwPB96SGGO3hSGFFSNBtVVGABS1egBDDHbwpDCipGg2qqjAArsPhh/wAhPxD/ANu3/oL1yVdb8MP+Qn4h/wC3b/0F6zrfCJno1FFFcogqJbq3e6ktVnia5jRXeEOC6q2QCR1AODg+xrkvHHjgeHgml6XHHd6/dJuhgY/JAnQyykdEHYdWPA9ub+Ftm9t4q1uS4upbu9uLWCa5upT80sheQZx0AwAAo4AAFA+V2uerVDd3dvYWc13dzJBbwqXkkkOFVR1JNTVwHxMtvt8mg2Mk88du9y8jrFIU3MiZXOPQ8/UCmld2EVL29uPFV5Hd3cbwaVCwe0s3GGkYdJZR691Q/d6n5vu265z+xR/0E9V/8DHo/sUf9BPVf/Ax67Yw5VZFWOjornP7FH/QT1X/AMDHo/sUf9BPVf8AwMenZgdHXL65rks88ml6XKUdflurtf8Alj/sL6v/AOg/XAqvq+lvb6LfTxarqqyR28jq32x+CFJBqlp8McGnwRxqFUID9SeST6knvSd9gJLe3itYFhhQJGvQf19z71teD/8AkftO/wCva4/9krKrV8H/API/ad/17XH/ALJUVPgYmevUUUVyCCvO/G/jeeO5k8O+HZR/aOMXd6BlbJT2HrIR0HbqaPG/jeeO5k8O+HZR/aOMXd6BlbJT2HrIR0Hbqa42xsYNPthBADjJZmY5Z2PVmPck9TTSNadPm1ex6b8OTIfAGk+bPNPJscGWeQu7fO3JJ5NdTXL/AA6/5EHS/wDdf/0Y1dRSMmISFUsxAAGST2rzvWNYfxfI1rasyeH1OJJBwb8jsP8Apj7/AMf+796X4mPqN1JpOjWl7HbWt4JpLpXhL+csezCHDKdp3nIzzgDpkHn1j8QKoVdU08KBgAae2AP+/tbUqd9WNI6BVCqFUAKBgADgClrn9viH/oLWH/gvb/47Rt8Q/wDQWsP/AAXt/wDHa6dewzoKK5/b4h/6C1h/4L2/+O1S1e78Radot9fLqdgxtreSYL9gYZ2qTjPmn09KNewF/Xddazf+z9P2yai65JblYFP8b/0Xv9MmsK1tVtkYBmkkdt8srnLSMerE/wCcdBxRa2q2yMAzSSO2+WVzlpGPVif846Dip6SXVgbPgb/koVv/ANgu6/8ARtvW34l/4qvxxp/hhPmsLDF9qPox/gjP1z09G9q5XQdWg0PxQ+p3J/dW+j3bkZ+8fNt8KPcnA/Gu5+Hmkz2uiy6vqAzqesSfa5yRyFP3F+gBzjtnFc1T4mzSn7qc/u9TsKKKKyMSOeZLe3knlbbHGpdj6ADJrjPhdC8nhq51eZcTarezXTE9cFsAfmCfxq78R9ROm+BNTZCfNnQWyAdSXO0/oTW1oWnDSNA0/TwBm3t0jbHcgDJ/PNPoarSl6v8AI0KKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzfi7xlaeDobWa9s7qeK4ZlDQBSFIwcHJHXn8jQVGLk7Lcy/hJ/yT2z/wCusv8A6Ga7ivIvhP4ytEsrHwutndPds8jGVQvlqMlsk5z09q9dpy3NcTFxqu/UKKKKRgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBfEvWNWgbQ/D+iXn2G81u7MBvAMmFFGWK+/Nd7XNeNfB0HjHS4YDdy2N7ayiezvIfvQyDvjuPbNAHmmveH/ABdoGp6X4Xj8ZaheaZ4hl8mS5umLT25X5mCMSThl4xT/ABP8PoPhjo58WeFNUv4LmxdGuIZ5t6XSFgCGGBzzXrHhxbuLRILbUNUi1O+gzFc3MYUBnB5BA6EccVyPjjwleeIdWS41vxHHZ+ELYJLLZYCGR1PO9+Pl6dz7DvQB3tncC7soLkLtE0ayAHtkZqamxhBEgjACADaB0x2p1ABXM/ET/km/iT/sHT/+gGumrmPiMwX4b+JCxAH9nTDn/cNAHE6f/wAS2y+FusDhWs4rGU+okiUL+pY167XlOoWrz/ALQrmH/XWNlZ3UZ9CqqCfyY16fY3SX2n215H/q54llX6MAR/On0NZ604v1X6/qYHj/AEdtZ8G3sUIP2m3AuYCOodOePcjI/GtDwzrC6/4a0/U1I3TwguB2ccMP++ga1q4PwL/xJPEHiDwq/EdvP9rtB/0xkxwPYfL+JNHQa96m121/z/Q7yiiikYhXi/xH8WXniJdZ0LS5XtdJ08SRX9wpxJdSquTCvdYxxuPVvujjJPtFfPmm6beeIfFXi/RNPTMs+tXfnzsDstomwN7epPIVepI7AEgKja+p73YknT7Yk5PlL/IVYpkMQhgjiBJCKFBPsMU+gkK8w1D/AJHXxD/12h/9ER16fXmGof8AI6+If+u0P/oiOtqHxjQUUUV2lBRRRQBgeJv9don/AF/N/wCk81RVL4m/12if9fzf+k81RVm92IK7b4W/8eWv/wDYUH/pNBXE123wt/48tf8A+woP/SaCsa3wiZ3tZHinVJtE8J6vqtsqNPZ2cs8ayAlSyqSM47ZFa9c/45tp7zwF4gtraGSaeXT50jijUszsUOAAOST6VzCPNPBli1t8QNLubm4kvNRu2nku7yX78z+UfyUDhVHAHAr2uuJ8F+EJrGVdb1hQNSdCsNuGytoh6jjhnPc9B0HGSe2oZU2m9ArzbX/+R/1H/rwtf/Qpq9JrzbX/APkf9R/68LX/ANCmrWj8aEiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzqvWb3EFdb8MP+Qn4h/7dv8A0F65Kut+GH/IT8Q/9u3/AKC9ZVvhEz0aiiiuUR86eEppNQ0htYu2MuoX80klzcOctIQ7KPoAAAAOB2r0D4d/8jXq3/XjB/6HLXm/gyeK28EWs0zrHEhmLM3QDzXr1r4faFfWr3etX8ZtmvYo44bVxh0jUsQz+jHd93sAM85Ab2OibSppHc1w/j7/AJCnh7/rrP8A+i67iuH8ff8AIU8Pf9dZ/wD0XVU/iRzmRRRRXoFhRRRQBn67/wAi9qf/AF6S/wDoBrGtf+PSH/rmv8q2dd/5F7U/+vSX/wBANY1r/wAekP8A1zX+VRLcRLWr4P8A+R+07/r2uP8A2SsqtXwf/wAj9p3/AF7XH/slZ1fgYmevUUUVxiPBNMA23z4G59RvGY92P2iQZPr0FXqpaZ/qrv8A7CF5/wClElaOl6Xe+JtSbT9PcwwREC8vQMiEddi9jIR26KOT2Bo7FJRgmz0H4df8iDpf+6//AKMauoqppmm2ukabb6fZR+XbW6BI1JJOPcnknuTVupOM4Tx3/wAjHoH/AFxu/wD2jWXWp47/AORj0D/rjd/+0ay67aHwFIKKKK2GFZPin/kUda/68Z//AEA1rVk+Kf8AkUda/wCvGf8A9ANKWwFGiiioER2Ggf8ACSeNdJsnOLdIpZrgZ4eJXiJUjvltg/M9q93AAAAGAK8l8Df8lCt/+wXdf+jbevWq5KvxMJSbSXYKKKKzJOF8cf8AEz8U+FNBHzLJdm8mX/ZiGRn2PzCu6rhdL/4m/wAXNYvfvRaVZx2cZ7B3+Y/j94V3VNmtXRRj2X56hRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuW+Imif274Kv4EXdPCv2iH13JzgfUbh+NdTRQVCTjJSXQ8e+CGicahrki+lrCfyZ//AGX9a9hqho2j2mg6Ymn2SbIEZ2A/3mLf1x+FX6bd2XXqe0m5BRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKpatq+n6Fp0uoapdxWtpF9+WQ4A9vc+woA8g+IZh8B+JTrvhfXGi12/lUz6IQZlvCT12DlT/kYrO8PSH4oeLpbfx5qb2c9nJmDw2FaBTjnJzyx9uv0FdTouvfC+xm1zxlZajFdXZlMtxPKjecm44CxowBAPTgc9zWVqPir4e/EzULXT9QtdS0nU2I+wX9xAIXLZ4CuGORns3HpzQB7QqhVCgYAGAKz9d0+61XQ7yxstSl025njKR3cS7miPqBkfzB54INX0XZGq5JwAMnvTqAPH3+EfjML8nxX1kt6FZQP/R1cj4l+Fni3RYJte1nVoPFGnWKGee2vbudWZFGSRz1A/wBr8DX0dXM/ET/km/iT/sHT/wDoBoAlsFtfEnw8tltrVbW11DTFEVuMYhV4+FGPTIH4VT+Gl8b7wFpwfPm24a3cHtsYgD/vnFWvh/8A8k58Nf8AYMt//Ra1keBP+Jd4j8WaGflWG+F1Gv8AsyjPH0AX86fQ1jrTku1n+h3VeR+NPGOk6N4+03VrCf7Td2iSWt/AgIynYbiMZBJ/IV65XmHxT8A/2tbvrulw5v4lzcRIOZkHcf7QH5j6CiO5eGcOe09mdX4I8UP4u0SXUntVtgLholjD7uAFOScDnn0rpK87+C+P+EHkx/z+yZ/75SvRKHuRWio1GkFV7Wws7Fp2tLWGBriUzTGKML5kh6s2OpOByasUUjIKKKKACvMNQ/5HXxD/ANdof/REden15hqH/I6+If8ArtD/AOiI62ofGNBRRRXaUFFFFAGB4m/12if9fzf+k81RVL4m/wBdon/X83/pPNUVZvdiCu2+Fv8Ax5a//wBhQf8ApNBXE123wt/48tf/AOwoP/SaCsa3wiZ3tFFFcwgooooAK821/wD5H/Uf+vC1/wDQpq9JrzbX/wDkf9R/68LX/wBCmrWj8aGiGiiiu4oKKKKAMPxT/wAeVn/1+xfzqvVjxT/x5Wf/AF+xfzqvWb3EFdb8MP8AkJ+If+3b/wBBeuSrrfhh/wAhPxD/ANu3/oL1lW+ETPRqKKK5RHlHwy+G17pWn2k/ieJBNaSO1rZBg6o29iJXIJDNz8o6L16/d9XoooBu4Vw/j7/kKeHv+us//ouu4rh/H3/IU8Pf9dZ//RdXT+JAZFFFFegWFFFFAGfrv/Ivan/16S/+gGsa1/49If8Armv8q2dd/wCRe1P/AK9Jf/QDWNa/8ekP/XNf5VEtxEtavg//AJH7Tv8Ar2uP/ZKyq1fB/wDyP2nf9e1x/wCyVnV+BiZ69RRRXGI8K8M6TfeJL6+0+wZoIYtQu/tl7jIhBuJDtXPBkIPHYA5PYH2nStKstE02HT9PgENvEMKo5JPUkk8kk8knkmpre1t7ONo7aCKBGdpCsSBQWY5ZsDuSSSe5NTUFOTYUUUUEnCeO/wDkY9A/643f/tGsutTx3/yMegf9cbv/ANo1l120PgKQUUUVsMKyfFP/ACKOtf8AXjP/AOgGtasnxT/yKOtf9eM//oBpS2Ao0UUVAjZ8Df8AJQrf/sF3X/o23r1qvJfA3/JQrf8A7Bd1/wCjbevWq5KvxslhTJZUhheWRgqIpZiewHJp9cv8RNSOmeBNUkU4kli+zoB1Jc7ePwJP4VmVCPNJR7mf8L4nn8P3mtTKRLq19LcnPXbuwB+Yb867is3w9po0jw7p2n4wbe3RG92x8x/PNaVN7jqy5ptoKKKKRAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeGfHCy8RaJqFr4o0zVNS/sxikV1aRXckaIw6HCMMBhwSO/wBa7TwtovhnxZ4dtNYsbnWTFOnzJ/bd3mNx95T+96g12mqabaaxpdzp19EJbW5jMciHuD/WvAfBuo3fwh+JVz4U1eVjot+4MEzfdBPCSe2fut/9agDa+KngnV9B0OXX/DfiTXY4bbBubSTUZnATONyktnjuCTXsumMz6VZu7FmaBCSTkk7RUesaZDrei3umTsVhu4WhZl6gMMZFWbaEW1rDApJWJAgJ6nAxQBLRRXO3/jLT9N8S2eg3NtereXpItyIh5cmOpDZxx+dAHRUVj6f4ih1LVrvT4bK+V7R/LmlkiAjDYyAGzzwQePXnFbFABRVb+0bL/n8t/wDv6v8AjR/aNj/z+W//AH9X/GgCzRVdb+zZgq3cBJ4AEg5/WrFABRXn3iDxxrk3i6Twr4O0y0vNQt4xLeXN65EEAPQELgk8jv8Ah1o8O+OtXj8Q3nh3xlp9rY6hb2xu0ubRmMEsQ6kbskYwe/Y9KAPQaK8rsfG3j7xdFNqnhLQtJj0ZHZYH1ORxLc7TglQpAH48e9a+ifEZtY8H65qD6f8AZNZ0aOQXdjK2QsiqSOf7pwfyP1oA72isHwdrs3iTwdputXEMcU11D5jRx52qckcZ+lcpp3xIv734Xaz4rextlubCaWNIQW2MFKgZ5z3oA9JqK5uYLO2kubqaOGCNdzySMFVR6knpXli+NfiNqfh9fEmkeHtITShD53k3Urm4mUDLMoBAA4OAecetVPiB4pvvFXwQGsaXZQizvI/9OEsnzQYcD5f73zDH0oA9fgniubeO4gdZIpVDo69GUjIIqSuT+HU+tz+D7H+27O2tmWGNbYW8hbfFsXazeh9q6ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry/4wfZ4rnwpd6tGZNAg1LN+CpZBkfIWHcda9QqG6tLa+tZLW7giuLeQbXilQMrD0IPBoA8/1bwFo3ijxB4a8S6LHpT2NtIXuDFgJcRj7uNoIYhh3x6VT+NmpaK/hNtGeSGbXZZYvsFtGQ0yvuGGAHKjGRnvXpOn6faaVYQ2Nhbpb2sI2xxRjCqPQVTfw1osmvjXZNNgfVFQRrcuuWUDpjPTr1HNAF2xWZNPtluDmdYlEh/2sDP61YoooAK5n4if8k38Sf8AYOn/APQDXTVzPxE/5Jv4k/7B0/8A6AaAH/D/AP5Jz4a/7Blv/wCi1rIn/wCJX8ZbaTpHq2nNGfeSM5/9BUfnWv8AD/8A5Jz4a/7Blv8A+i1rI+I3+g3HhvXRx9h1JFkPpG/Df+ggfjTRrR1ly90zuqKKKRkUtO0qz0lbhLKIRRzzNOyDoHYDOB26Z/GrtFFA229WVdS1G00jTbjUb6YQ2tvGZJZD2ArzkfF68ls21a28Da3NoQy324bQSg6uE7j3zivQda0Ww8Q6TPpeqQGeznAEkYdkzg5HKkHqBXN+M/FOleBPDCWcaCS7kh+zafp8fzPKcbVGOu0cZP8AWgR0eh63YeItGttV02bzbS4XcjYwR2II7EHitCuN+F3hu78LeArLT7/5bti08sf/ADzLnO38Bj8c12VABXmGof8AI6+If+u0P/oiOvT68w1D/kdfEP8A12h/9ER1tQ+MaCiiiu0oKKKKAMDxN/rtE/6/m/8ASeaoql8Tf67RP+v5v/SeaoWZUUszBVUZJJwAKze7EDMqKWZgqqMkk4AFd38LradND1G9kheOG/vvtFsXGDJH5MSBsdQCUbGeowehrB8JeEm8SPHqmqRFdGUh7e2cYN4ezuP+efov8XU8YB9XAwMDpXNVmnohMK4Tx34u1jTdY0nwz4at7eTWtU3Mstzny4I16sQOvf8ALoa7uoLy6tbC0kvLyaOC3gUu8shAVB3OTWIjy7UfEPjv4f3en3nia907WdFurhbeZ7eDypLdm6EYwCOvr07V6wCCMjoa8ellvPjH4htPs0Elv4M0y4ErTyLta+lXoFH93/E9+B7D0oAK821//kf9R/68LX/0KavSa821/wD5H/Uf+vC1/wDQpq1o/GhohoooruKCiiigDD8U/wDHlZ/9fsX86r1Y8U/8eVn/ANfsX86qTTRwQvNM6pGg3MzHAArN7iCaaOCF5pnVI0G5mY4AFd78NtIvbS2v9UvIWt11BozDDIMSBEBAZh/CTuzjqBjPPAzfB3g6TUZodb1uBkt0IksrGQYJPaWUevdVPTqecBfS65qtTm0QmFFFef8AxR8bf8I3p9rpVpdRWup6qxiiuZm2pbR9GlJ9s8D1rERma78UbhPiZpHhrRkjks2vFtr66ZNwLnrGh6ZA6/WvU6+etW1HwbouqeALTRtas7i20+/aW8uBICSx27pHPuQa9+sr221GyhvLOdJ7aZQ8cqHKsD3BoAnrh/H3/IU8Pf8AXWf/ANF13FcP4+/5Cnh7/rrP/wCi6un8SAyKKKK9AsKKKKAM/Xf+Re1P/r0l/wDQDWNa/wDHpD/1zX+VbOu/8i9qf/XpL/6AaxIHWOxid2CosQJYnAAxUS3ESu6xozuwVFGSxOABXV/D/Qbu61KPxJcq1vaLC8dnEy4eYPjMhz91cD5R1Oc9MZq+EfCLeIHi1bVoSukqQ9raSDBuj2kkH9zuFP3up4wD6pXLUqX0QmFFFFYiPHJ9PPxB+K+vaLr2pXkGn6VGn2TT4JjEJQRzIcdf/rirvw/lutD+JGveDrfUrjUdGtIEnhaeTzGtnOMx7vxPHt9aybDw9D8WvGuu6lrU8lvaaPcmxtYbMLHIcZyzvjcfp7mr/hGxPw7+KJ8HWkoudK1S2a8ieRF86J1zkM4ALDg9fUe+QD12iiigDhPHf/Ix6B/1xu//AGjWXWp47/5GPQP+uN3/AO0ay67aHwFIKKKK2GFZPin/AJFHWv8Arxn/APQDWtWT4p/5FHWv+vGf/wBANKWwFGiitDw34bm8X3BkkLxaFExWWVSQ12w6xoeydmYfQdyMpSUVdiNH4dWNze+JH1yOPGnQWs1okzf8tpGeMnZ6qvlkE9MnAzg49SqOCCG1t47e3iSKGJQkcaKAqqOAAB0FSVxylzO5IVwvjv8A4mfiLwroA+ZZ703Uy/7EQzg/UFvyruq4XTv+Jv8AF/VLv70WkWSWqHsHf5if/QhQjWjo3LsjuqKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhIUEkgAckmvPn0qy+JHia11a4tIpND0iRhaSuvN7Lnlh/0yUjj+8R6Vz3xL+KOi2mtr4WnuLoWSn/iaSWahnYf88VJIxn+I54HFS2/7QHga0tore3stVihiUIkaWyAKo4AA30AerX13Fp+n3F5LxFbxNK30UZP8qi0fUk1jRrLUo42jS7gSZUbqoYZwfzrwzx98dtG1vwhe6Todtfrc3ieU0lxGqKiH73RiSSOPxr2LwR/yImg/wDXhD/6AKAN6uK+JekjWdDtra03DXFuFl0t0OGSVeS2eygZz+HfFdrWUfDunNrq60y3Jv0Qorm8mKqp6gJu2AHA4x2oAxvhxrFvq/hOIrG0V9BI0WoRSHLrcA/OW+p5/H2rrW+4cruGOnrWHpng/RdH1e51WxguIry6bdcOb2ZxKemWVnKnr6cVu0AecNYaPuP/ABZ9jz1+x6fz/wCRKT7Bo/8A0R5v/APT/wD45XpFFAHn1nY6St7AU+E7WrCRSJ/slgPKOfvZWTPHXjmvQaKKAPKvBM0em/GTxtp16yx3d68VxbBzgyR4P3fXGR+XtW34w8TWd++r+CrFJ59Xn0qaXMKgpH8pwrnOQTxgY7itfxR4F8PeMPKbWLHzJ4eI543MciD03Kensaf4Y8E6B4PilXRrEQyTf62Z3LySfVjzj26UAYXwf1Sxu/hjpccMsYeyjMNymQDG4JzuHbPWuK0ZhrN/8V9X0/8AeWE8DQxSJysjrG2SPX1/Gu61f4R+DNa1KS/uNMaKeY5m+zzvEsp/2lU4/LFdTpWi6boemR6bpllFbWaAgRIvHPXPqT6mgDj/AIY6rYwfB7SruW6iSC1tWEzs4AQqTkH0Nee+HZFm/Zv8USr917mdh9CUr0Zfg74IXVTfjSDkv5ht/Ofyd3rszj8OntW5D4L8PQeHrzQYtPC6ZeO0k8Amk+dmIJOd2R0HQigCp4eAHwr08Acf2Qn/AKKry6w5/ZUuv91//R9e42+m2lrpUemQxbbOOEQLHuJwgGMZJz075zWbbeENBtPC7+GoLBV0h1ZGt2kduGOT8xJbrz1oAl8KkHwhopByPsMHT/cFa9YPhXwhpPg6xms9IWdYJZPMZZZjJg4xxnoK3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ+In/JN/En/AGDp/wD0A101cz8RP+Sb+JP+wdP/AOgGgB/w/wD+Sc+Gv+wZb/8AotaZ8QtP/tLwHq8IGWSHzl+qEP8A+y0/4f8A/JOfDX/YMt//AEWtdBNEk8EkMgykilWHqCMGgqEuWSl2M7w3qH9q+GdMvictPbIzn/awN365rUriPhbK6eFZtLlOZdMvZrVgevDbv/Zj+VdvTe46seWbQUUUUiDnPHfiqPwb4QvdZaMSyRAJDGejSMcKD7dz9K8R8GfEHwXp1+/iTxPdahqfiaflpmtsx2w/uRjPGPX8vf6RooAxfC3inTfGGijVdKMxtjI0Y81NrZHXj8a2qKKACvMNQ/5HXxD/ANdof/REden1y+peBrHUtWudS/tDUraa52mVbeVQpKqFBwVPYCrpyUZXYI5iit7/AIV3af8AQb1r/v8AR/8AxFH/AAru0/6Detf9/o//AIiuj6xHsVcwaK3v+Fd2n/Qb1r/v9H/8RR/wru0/6Detf9/o/wD4ij6xHsFzgfFLKkmjMzBVW+Ykk4AH2eatjwl4SbxI8eqapEV0ZSHt7Zxg3h7O4/55+i/xdTxgHo2+GWjT3NrLf3eo38dtL5y29zKhjZsEDcAoyPmPGcHvkcV2gGBgdKyqVebYTYAYGB0ooorEQV5L8W9E8Z+I9U02y0jRP7Q0KDE1xEbuOFbiTPCtlw2AAPzr1qigDymy1z4r2kUFrD8PdLt7WMBFSO9iARfYCSvVVyVGRg45FLRQAV5tr/8AyP8AqP8A14Wv/oU1ek1j6n4U0LWbz7ZqGmQT3GwR+YwIYqCSBx6ZP51cJcsrgcRRXV/8IB4V/wCgLb/m3+NH/CAeFf8AoC2/5t/jW/1jyHc5Siur/wCEA8K/9AW3/Nv8aP8AhAPCv/QFt/zb/Gj6x5Bc818XTR2+mW00zqkaXkTMzHAAzXR+DvB0mozQ63rcDJboRJZWMgwSe0so9e6qenU84C9TF4D8LQ3EM66JaGWFxJGWUttYdCAT1FdFWU6rlsFwooorIQVkax4X0LxDJFJrGk2l88QIjM8YYqD1xmteigDyjxZ8KtPuPEnhiTRPDNiNPiuy2pCNY0Bi4xuBILDrwM16hZ2dtp1nFZ2cCQW0KhI4oxhVA7AVPRQAVwPxHurezvvD011PFBF50w3yuFXPl9Mmu+pskUcq7ZEVxnOGGacXZ3A8g/4SHRf+gxp//gSn+NH/AAkOi/8AQY0//wACU/xr1v7Ha/8APtD/AN8Cj7Ha/wDPtD/3wK3+sPsO55J/wkOi/wDQY0//AMCU/wAaP+Eh0X/oMaf/AOBKf41639jtf+faH/vgUfY7X/n2h/74FH1h9gueLa3r2jyaDqKJq1izNaygKtwhJO08da1fA3hFvENvZ6vq0JXSVRHtbVxg3RwCJHH9zuFP3up4wD6p9jtf+faH/vgVNUTquQXCiiishBRRRQB55qnw71W18SXeveDvER0a4vjm8t5bcTQyt/eweh/DuelXfCfgKbR9cuPEWu6xJrOuzx+V9oaMRpEn91FHT/PHWu2ooAKKKKAOE8d/8jHoH/XG7/8AaNZdd3rHhzStfMB1O185rfd5TCR0K7sZ5Ug84H5Vmf8ACvfDP/PhN/4GT/8Axdb06ygrWGmcvRXUf8K98M/8+E3/AIGT/wDxdH/CvfDP/PhN/wCBk/8A8XV/WF2C5y9ZPin/AJFHWv8Arxn/APQDXff8K98M/wDPhN/4GT//ABdMl+HPhWaJ4pdOkeN1KspvJ8EHqPv0PEJrYLnDeG/Dc3i+4MkheLQomKyyqSGu2HWND2TszD6DuR6/BBDa28dvbxJFDEoSONFAVVHAAA6CiCCG1t47e3iSKGJQkcaKAqqOAAB0FSVzyk5O7EFFFFSA2R1ijaR2CooLMT2ArifhgjXOi6hrkqkSatfy3AJ/uA4A/Ahq0viDqX9l+BdVnBw8kPkJjrlzt4/Ak/hWl4a03+x/DOm6fjDQW6K/+9jLfrmn0NVpSb7v8jUooopGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGXP4b0K6nee40XTppnOXkktUZmPqSRzUf/CJ+HP8AoX9K/wDAOP8AwrYqKW5t4CBNPFGT0DuB/OgDM/4RPw5/0L+lf+Acf+FasUUcESRQxpHGgCqiDAUDoAB0FRx3trK4SO5hdz0VZASanoAKKwNT8X6fpOtWmk3MF59rvCwtlSHcJdoycHPYeuKsDxHYpeQWt2s9lNcNshF1EUWRv7ob7u72zn2oA16KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmfiJ/yTfxJ/wBg6f8A9ANdNXM/ET/km/iT/sHT/wDoBoAf8P8A/knPhr/sGW//AKLWujrnPh//AMk58Nf9gy3/APRa10dAHC+G/wDiWfE3xRpnRLtIr+Ifo5/76b9K7quF8Q/8Sz4o+GdS6R3sUtjIf1Qf99N+ld1TZrV1tLuv+AFFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4Xx9/xMta8L+HxyLq++0TL6xxDJB+oJ/Ku6rhbL/ib/GHULj70Oj2KW6+gkk+bP5Fh+Fd1TZrU0UY+X5hRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4/XPFl94f8U2llqEdpDpF7HJ5N8dxIlUZEbD1I5B79K3tDn1S502OfVobeCeQbhFDuOwdgc9/5Vz3i7SL3xYJ9Jl0+8t7GCIzw3cckWXuR/q9o37hjryBk+nfY8KXWt3Og248Q6c9lqUahJsyRushHG5djHr1wcdaAJvE1/PpfhjUr62BM8Fu7x4GeccGuQt7TRUiUz/DvUr2dgDJc3dnbTSyt3ZnaQk16DNFHcQvDKivHIpV1YZDA8EGueXQNcs1EGmeJTHaLxHFd2aztGOyh9ykge+T7mgCno0OjrqsBtvAU2mTZO27axtoxHx/eRiw9OB3rsKxLHT/ABDDeRyXuvW1zbjO+JNP8stx/e8w4/KtugDzrxp/yVbwD/v3X/oArR+LFsk/wz1l2O17eIXETjgo6MCCD2NVfFWmaxffEHwvqlno1zPZaW85nlWWFch0AG0NICefYVd8V6ZqnjLSxoS2U2nWNxIpvbieSMsYgQSiKjNljgDJwAPWgDa8K382qeEtIv7n/X3FnFJIfVioJNa9RW1vFaWsVtAgSGFBGijsoGAKloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ+In/JN/En/YOn/wDQDXTVzPxE/wCSb+JP+wdP/wCgGgB/w/8A+Sc+Gv8AsGW//ota6Ouc+H//ACTnw1/2DLf/ANFrXR0AcR8Uo3i8M22rRDMul30N0COuA23+ZH5V2kUiTRJLGdyOoZT6g9KzPE+n/wBq+FtUsQMtNbOEH+1jK/qBVHwBqH9p+BNInJyywCFvqhKf+y0+hq9aS8n+Z0lFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGZURnYgKoySewpa5vx9qX9leBtWuQ2HaAwp67n+QY/PP4UFRjzSUV1Mr4Yq13peqa9IDv1XUJZlJ/uA4Ufgd1dzWR4W03+x/C2mWBXa8Nugcf7ZGW/Umtem9yqsuabaCiiikZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzPxE/5Jv4k/7B0/8A6Aa6auZ+In/JN/En/YOn/wDQDQA/4f8A/JOfDX/YMt//AEWtdHXOfD//AJJz4a/7Blv/AOi1ro6ACuF+G/8AoLeIdCPH9n6k5jHpG/K/+gk/jXdVwtr/AMSv4yXsXSPVtOSYe8kZ2/yBP400a09Yyj8/uO6ooopGQUUUUAFFFFABRRRQAUUVzXiXxO+nSrpelrHPq8q7sPzHbIf+WkmO3XC9WPoASGlfRAdLRXnv9p+Kv+g1Z/8Agv8A/tlL/afir/oNWf8A4L//ALZV+yn2Cx6DRXn39p+Kv+g1Z/8Agv8A/tlH9p+Kv+g1Z/8Agv8A/tlHsp9gseg0V5nqPiTxDpVk91da7ZrGvAA07LOx6Ko8zknsK2vhz4h1jxDpGoy60IBc218YVEKbfkMUbgHk/N85BxxUyg47gdlRRRUgFFFFABRRRQAUUVynibxNLb3B0bRij6oygyzMNyWaHozDu5/hXv1PHVpNuyA6uivNRBqgAz4l1gn18yP/AOIo8jVP+hk1j/v5H/8AEVp7GQ7HpVFea+Rqn/Qyax/38j/+Io8jVP8AoZNY/wC/kf8A8RR7GQWPSqK8o1S+u9Iszc3PiXWTk7Y40eMvI56Ko2ck/wD1zxWn8LtT1u/m1uPWdQlujE8LRJJtPkhg2V3ADd0GT+QFTKDjuI9EoooqACiiigAooooAKKK5rxN4mbTnXS9LVJ9XmXcFblLdOnmSY7dcL1YjsASGlfRAdLRXlQ8O2UmZLwzXly53S3E0rbpGPUnBwPoAAOgpf+Eb0n/n0/8AIj/41r7FjseqUV5X/wAI3pP/AD6f+RH/AMaP+Eb0n/n0/wDIj/40exfcLHqlFeQ6jpmgaXZPd3cG2NeAA7lmJ6KozyT2FUvAMMi/EW1uyrWyz2s6raLIWWNBsI3c8t3J6dAOmTMqbirhY9rooorMQUUUUAFFFFABRRRQAUVi+I/EcOg20arGbnULglbW0VsNIw6kn+FB1LdvckA8gsniOUeZceKb6OVvmZLaC3Eak9lDRM2B05JNXGDlsB6TRXm//E9/6GzVv+/Vp/8AGaP+J7/0Nmrf9+rT/wCM1XsZDsekUV5v/wAT3/obNW/79Wn/AMZqO4uNXtLeS4uPGOpxQxqWd3jtAFA7n9zR7KQWPTK4X4hf8TLU/DPh8ci8vxNKo7xxjLD8ifyrF8BeJNe1Pxu1teapdXOlS2E0sEV3DEsm5JIgHOxFIyHPynt154G1bf8AE3+Md3L1h0awWIegkk5z/wB8lh+FRaz1NaOknLsjuqKKKkxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5n4if8k38Sf8AYOn/APQDXTVzPxE/5Jv4k/7B0/8A6AaAH/D/AP5Jz4a/7Blv/wCi1ro65z4f/wDJOfDX/YMt/wD0WtdHQAVwvjj/AIl3ijwlrY+VY702krf7Moxz9AGruq5D4m2TXngO/ePPm2pS5jI7FWBJ/wC+d1NbmtF++k+un3nX0VU0q9XUtIsr5MbbmBJRj/aUH+tW6Rm1bQKKKKBBRRRQAUUVyvirxamlSrpWnPBJrEy7gJG+S2T/AJ6Sf0Xqx9ACQJXAk8TeJn0+QaXpapNq8y7gG5S2Q8eZJ+uF6sR2AJHOWNillG/7x5p5m8ye4lOXmc9WY/oB0AAAwBUFilnZRv8A6Ys08zeZPcSyAvM56sx/QDoAABgCrf2y2/5+If8AvsV104KPqMmoqH7Zbf8APxD/AN9ij7Zbf8/EP/fYrQZNVTUdRttKsnurp9sa8AAZZ2PRVHcnsKjvtZsNPtHuZ7lCq8BUIZnJ6KoHJJ9K5N3udTvRqGoDa65Fvbg5W3U/zc9z+A46q/YAd7nU70ahqA2uuRb24OVt1P8ANz3P4Djr3vwt/wCPLX/+woP/AEmgria7b4W/8eWv/wDYUH/pNBWVZWiJne0UUVzCCiiigAoorifG/ju20G5j0S2uoYNVuIvMM0w/d20RJG89mYkEKvtk8DkSuBb8TeJpbe4OjaMUfVGUGWZhuSzQ9GYd3P8ACvfqeOuFY2MWn25iiLuzMXklkbc8rnq7HuTWNY694b0+3MUWrQOzMXklkk3PK56ux7k1Z/4SzQP+gta/9911QiooZs0Vjf8ACWaB/wBBa1/77o/4SzQP+gta/wDfdaXQzZqlqmqW2kWZubkscnbHGgy8jnoqjuT/APXPFZ1z4z0G3hLrqEU8hIWOGI7nkY9FUeprBAub68Oo6iVNyQViiU5S3Q/wr6k927/TAov2AALm+vDqOolTckFYolOUt0P8K+pPdu/0wK7X4Yf8hPxD/wBu3/oL1yVdb8MP+Qn4h/7dv/QXrOqvdEz0aiiiuUQUUUUAFFFct448UzeGtNt1srSS51C9kMNuFTcseBlnYdwAOnc4HHUG4EnibxM2nOul6WqT6vMu4K3KW6dPMkx264XqxHYAkc3Y2K2SSEyPPcTN5lxcSnLzP3Zj+gA4AAAwBWHY6tDZJITp2sT3EzeZcXEtuC8z92Y5/AAcAAAYAq3/AMJKn/QK1X/wH/8Ar11U4KPqM26KxP8AhJU/6BWq/wDgP/8AXo/4SVP+gVqv/gP/APXrW4zbqrqOo22l2T3d3JtjXgADLMT0VR3J7CsqfxXBbW8k8umaoscal2P2boAMnvWEZbjV7pNSvhtwM21vnKwKe59XI6nt0HfKv2AV3udUvV1DUF2sufs9tnKwA9z6ue57dB3zueD/APkftO/69rj/ANkrKrV8H/8AI/ad/wBe1x/7JUVFaDEz16iiiuQQUUVna5rmn+HdJm1LUpxFbxD0yzseiqO7E8AUAaNFcp4D8UX3iuw1O6v7GOya3vjBFCpJZY/KjkXec4LfvOcYHbtk9XQAVi+I/EcOg20arGbnULglbW0VsNIw6kn+FB1LdvckA1/F/jHTfB+nxzXk0IurljHawSSrH5rd8seFUZGW7ZHUkA+fWniLQRczahqHifSbnU7gDzpvtcYVVHSNBu+VB2HfknJJNXCHMwNi0tJhczahqEwudTuAPOmxhVUdI0H8KDsO/JOSSauVj/8ACW+G/wDoYNK/8DI/8aP+Et8N/wDQwaV/4GR/411KyVkUbFFY/wDwlvhv/oYNK/8AAyP/ABpD4u8NqpJ8QaXgDPF5Gf607oDVuLiG0t5Li4lWKGNSzu5wFA7muJvLybxDcLNMjRadG263t2GDIR0kkH8l7dTz0Ly8m8Q3CzTI0WnRtut7dhgyEdJJB/Je3U89JqNwNjwQwX4gQMxAA0u6JJ7fvbeuh+Gam9stY19wd2qahJIhP/PNThR+BLCvPjqX9k3l9dBtr/2JdxIe4Z5bdB/6FmvYvCWm/wBj+EtLsSu14rdd4/2yNzfqTXNV+Jmi0pt93/X6GzRRRWRiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzPxE/wCSb+JP+wdP/wCgGumrmfiJ/wAk38Sf9g6f/wBANAD/AIf/APJOfDX/AGDLf/0WtdHXOfD/AP5Jz4a/7Blv/wCi1ro6ACq2oWiahpt1ZSfcuIXib6MCP61ZooBOxx3wvu3ufA1rBL/rrKSS1kHoVY4H5EV2NcL4M/4lvjTxdox4X7St7EvtIMtj6fKK7qm9zWsvfb76/eFFFU9X1KLRtFv9UnR3hsreS4kWMAsVRSxAzgZwKRkXKK8o8B6zreufEKTUNXumRbrS5Xi0+KQmG1QSRbR/tPhjufuTgYAFer0Daa0YV5LrOl6deeOvEUtzYWs8nnQDfLCrHHkR9yK9arzDUP8AkdfEP/XaH/0RHWtH4wRn/wBg6P8A9Amw/wDAZP8ACj+wdH/6BNh/4DJ/hWhRXbZFGf8A2Do//QJsP/AZP8KP7B0f/oE2H/gMn+FaFFFkByuvaZp9nd6LJa2NtA5vWUtFEqkjyJjjIHsKmqXxN/rtE/6/m/8ASeaoqjqxBXbfC3/jy1//ALCg/wDSaCuJrtvhb/x5a/8A9hQf+k0FY1vhEzvaKKK5hGF4k8XaT4VSzGoyuZ72dYLe3iAaSQkgEgZHyrnJJ4H1IB3a8D1fdqXj3Wnk33Gotq8VjbDlmESeU+xB2UZZjjHcmvfKBtWCvNtf/wCR/wBR/wCvC1/9Cmr0mvNtf/5H/Uf+vC1/9CmrWj8aBENFFFdxQUUUUAYfin/jys/+v2L+dV6seKf+PKz/AOv2L+dV6ze4grrfhh/yE/EP/bt/6C9clXW/DD/kJ+If+3b/ANBesq3wiZ6NUc88VtBJPPKkUMSl5JJGCqigZJJPAAHepK5/x3/yTzxL/wBgq6/9FNXKI4/TPH+p+JviJpUemH7N4Zdpo18yIeZfERMwk5GUQFRtAwTyT1AHqFeP+DbaW+8Z6dJaxF4NOV3uZB92MtEVVc/3juzjsOT2z7BQyppJ2QVw/j7/AJCnh7/rrP8A+i67iuH8ff8AIU8Pf9dZ/wD0XV0/iRJkUUUV6BYUUUUAZ+u/8i9qf/XpL/6AaxrX/j0h/wCua/yrZ13/AJF7U/8Ar0l/9ANY1r/x6Q/9c1/lUS3ES1q+D/8AkftO/wCva4/9krKrV8H/API/ad/17XH/ALJWdX4GJnr1FFFcYirqWoQaTpV5qN0WFvaQPPKVGSERSxwO/ANeJ3OpXvi/UYtd1QeXAo3afY5ytuhHDt6yEdT26CvVvHf/ACTzxL/2Crr/ANFNXk2k/wDIHsf+veP/ANBFNG1FJu7O++F//Hl4g/7Cv/trb13dcH8LiGsNfccq2qnBHQ4t4AfyII+oNd5SM5/EzhPHf/Ix6B/1xu//AGjWXWp47/5GPQP+uN3/AO0ay67aHwAgooorYYVk+Kf+RR1r/rxn/wDQDWtWT4p/5FHWv+vGf/0A0pbAUaKKKgRmTac+q+MfD9ivMc8jRzL6x7o3b9EJ/CvoavIvBUMcvxFs2dAzR6dcyIT2bfCufydh+Jr12uSr8RUpXioroFFFFZmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXM/ET/km/iT/sHT/+gGumrK8S6S+veF9U0mOVYnvLWSBZGGQpZSAT7c0AUfh//wAk58Nf9gy3/wDRa10deT6PrXxB8G6NZ6PfeBV1O2sYUt47rTr1SXVQADsILZwPar//AAte+i4uvh54sjP/AEzsi4/PigD0mioLO4+2WNvc+VJD50ayeXKuHTIzhh2I6Gp6AOA1m6t9A+LWm6hczxW9rqGnyW8skjhVBQ7sknp/CK7XT9Ss9VtRdWFzHcQFiokjOVJHBwa+ePiV4Wl8OeJXkTe1jeEywOxJx/eQn2/kRXs/w3tfsfw+0iPGC0RlP/A2Lf1qmtLnZXpRVKM079DqqxfGFrPfeCNftLWJpbifTriKKNRy7NGwAHuSa2qKk4zhvh/4RutIhTVtX+TU5bcQrbK2Vto+CVJ/iclQSegwAOhJ7miigbd9WFeYah/yOviH/rtD/wCiI69PrzDUP+R18Q/9dof/AERHW1D4wQUUUV2lBRRRQBgeJv8AXaJ/1/N/6TzVFUvib/XaJ/1/N/6TzVFWb3Ygrtvhb/x5a/8A9hQf+k0FcTXbfC3/AI8tf/7Cg/8ASaCsa3wiZ3tFFFcwjC0rwhpOka9qetwRu9/qMpkkklbd5YIAKpx8oO0E9zxk8DG7RRQAV5tr/wDyP+o/9eFr/wChTV6TXm2v/wDI/wCo/wDXha/+hTVrR+NDRDRRRXcUFFFFAGH4p/48rP8A6/Yv51Xqx4p/48rP/r9i/nVes3uIK634Yf8AIT8Q/wDbt/6C9clXW/DD/kJ+If8At2/9Besq3wiZ6NVPVtNh1nRr7S7hnWC9t5LeRoyAwV1KkjIIzg+lXKK5RFDRtGsdA0uHTtPi8uCIdzlnY9WY9SxPJJq/RRQAVw/j7/kKeHv+us//AKLruK4fx9/yFPD3/XWf/wBF1dP4kBkUUUV6BYUUUUAZ+u/8i9qf/XpL/wCgGsa1/wCPSH/rmv8AKtnXf+Re1P8A69Jf/QDWNa/8ekP/AFzX+VRLcRLWr4P/AOR+07/r2uP/AGSsqtXwf/yP2nf9e1x/7JWdX4GJnr1FFFcYjn/Hf/JPPEv/AGCrr/0U1eXeENFu/FVtaWtq7wafDDGt5er1B2jMUZ7v6n+H64Fe039jb6np11YXkfmWt1E8MybiNyMCGGRyOCelM0zTLLRtMttN063W3s7ZBHFEucKB7nkn1J5J5NBUZNbDtP0+00qwhsbGBILaFdscaDgD+p7571ZoooJOE8d/8jHoH/XG7/8AaNZdanjv/kY9A/643f8A7RrLrtofAUgooorYYVk+Kf8AkUda/wCvGf8A9ANa1ZPin/kUda/68Z//AEA0pbAUaKKKgRs+Bv8AkoVv/wBgu6/9G29etV5L4G/5KFb/APYLuv8A0bb161XJV+NksKKKKzAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB8YeGofFfh2fTpCFm/1lvIf4JB0P0PQ+xNaGi2R03QtPsW621tHCfqqgf0q9RQVzvl5egUUVieKrzXrPR8+HNOivdSkkEaLNJsSMHOXb1Ax096CTVF3bNdtaLcRG5VA7QhxvCngEr1x71NXjPw1sNV034weJoNb1AX+omwieedRhdzFTtUegzgdOnSvZqACvMNQ/5HXxD/ANdof/REden15hqH/I6+If8ArtD/AOiI62ofGNBRRRXaUFFFFAGB4m/12if9fzf+k81RVL4m/wBdon/X83/pPNUVZvdiCu2+Fv8Ax5a//wBhQf8ApNBXDxRXd/fxaZpkInv5hlVJwka95HPZR+ZPA5r1zwx4cg8M6UbSKV55pXM1zcPwZZSAC2OwwoAA6ADr1rCtJWsJmzRRUc5lFvIYApm2nYG6FscZ9s1ziKmo61pukzWcV/dxwSXs629sjZJkkPQAD+fSr9eCeIvDWu2HjfwVrfibWBfapd6xFH5MC7YLZAwO1AeTz3/n1r3ugArzbX/+R/1H/rwtf/Qpq9JrzbX/APkf9R/68LX/ANCmrWj8aGiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzqvWb3EFdZ8MP+Qn4h/7dv8A0F65O2tr3VtSTS9LRXu3G53cfJbp/ff+g6sfxI9c8O+HbLw1potLXc8jnfPcSffmfuzH+Q6AYArCtJW5RM16parq+naHYve6pewWlsvBkmcKM+g9T7VdrkPE/gSLxV4n0XUdQulk07TtzNpzxbkmc9GJz244welc4i3ofj7wr4jvPsmk63a3NzjIiyUZvoGAz+FdJXjvxestKhvfDVnotpBD4me/ja1+yxhHWMHktj+HOOvofevYRnAz170ALXD+Pv8AkKeHv+us/wD6LruK4fx9/wAhTw9/11n/APRdXT+JAZFFFFegWFFFFAGfrv8AyL2p/wDXpL/6AaxrX/j0h/65r/KtnXf+Re1P/r0l/wDQDWNa/wDHpD/1zX+VRLcRLWr4NO74g2CryyWlwzAfwg7ACfQZ4rIjju76/i03TYRPfzDKoThY17yOeyj8yeBkmvWPC/he08M2DRxsZ7yYhrq7cYaZv6KOgXoB6kknCrNW5RM3aKKK5hBVGTWdNi1iLSHvYF1GaMyR2xf52UdTj04NUfFnie08J6DNqVyDI+RHbwL96eU/dRR6k15J4d0nVdP+OGiXuvTmTVtTsJrq4T+GHIYLGvsoAFAHu9FFFAHCeO/+Rj0D/rjd/wDtGsutTx3/AMjHoH/XG7/9o1l120PgKQUUUVsMKyfFP/Io61/14z/+gGtasnxT/wAijrX/AF4z/wDoBpS2Ao0UVFLK6yRQQQvcXU7eXBbx/elb0HoO5J4AyTUN2Eb3gb/koVv/ANgu6/8ARtvXrVcr4O8Hr4fja+vnSfWLhNssq/ciTOfKjz/DkDJ6sRk9AB1VcU5c0rokKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8x8O/8l+8W/8AYPg/9kr06sKy8J2Fj4v1HxNFLcm9v4UhlRmXywq4xtGM547k1u0AFeYah/yOviH/AK7Q/wDoiOvT68x1qDULbxhrMo0jUZ4bh4nilt4C6sBCinke6mtaLSldjQlFV/Ov/wDoA6z/AOAbUedf/wDQB1n/AMA2rr9pHuO5Yoqv51//ANAHWf8AwDajzr//AKAOs/8AgG1HtI9wuZHib/XaJ/1/N/6TzVBFFd39/FpmmQie/mGVUnCRr3kc9lH5k8DmrWrabrutXWlQafod8kqXZdpLuExRIpikXczegLDgcntzXp/hjwxaeGbBoomM93MQ91duMPM39FHQL0A98k41KqWwmw8MeGLTwzYNFExnu5iHurtxh5m/oo6BegHvkncoorlEFFFFAHmnxR/5Gf4f/wDYcj/mtel1map4f0vWrrT7nULXzptPnFxat5jL5cg6HAIz06HIrToAK821/wD5H/Uf+vC1/wDQpq9JrgfEeia7J4tudQsNNS7tp7SCIH7QsZVkaQkEH/fFaUmlJNjRnUU7+yfFH/Qvj/wNjo/snxR/0L4/8DY66/aw7juNop39k+KP+hfH/gbHR/ZPij/oXx/4Gx0e1h3C5g+Kf+PKz/6/Yv51Xtra91bUk0vS0V7txud3HyW6f33/AKDqx/EjW1bwr4t1iO2totKgtMXKSNPNdK6xgHk7V5P0r0bw74dsvDWm/ZbXc8jnfPcSffnfuzH+Q6AcCsalVfZE2Hh3w7ZeGtN+y2u55HO+e4k+/O/dmP8AIdAOBWvRRXMIK4f4iePf+ESt7Ww0+OK41zUDstYpXCog6GRySMKP89K7iuX8RfDrwr4s1BL/AFvSzd3KRiNX+0yphQScYVgO5oA5zwToeh6Hdy65rfiTT9U8TXY/fXT3SER5/gjGeB2/wHFel9a4FPgr8PY3V18P4ZSCD9suOv8A38rvQAqgDoOBQAtcP4+/5Cnh7/rrP/6LruK5rxb4dvtdfTprC7t4JrOR2InjZ1YMu3sRg1UHaSbA5Wir3/CHeJv+glpH/gPJ/wDF0f8ACHeJv+glpH/gPJ/8XXX7eBVyjRV7/hDvE3/QS0j/AMB5P/i6P+EO8Tf9BLSP/AeT/wCLo9vALmDrv/Ivan/16S/+gGsSxju76Sz03TYRPfzRgqhOFjXAzI57KPzJ4GSa7K98C+Jb2xuLVtU0lVmiaMsLaTIBGM/f966nwl4UtPCmli3jc3F5IFN1eOuGmYDHT+FR2XoB6kknOdZfZE2O8L+F7TwzYNHGxnvJiGurtxhpm/oo6BegHqSSd2iiuYQUUUUAeW+O/C3jfVfHVhrOhtpc1pYRf6NDfOdqSnO59oHJ6YJridQHxK/4W1pH2htE/t/7DJ9n27vJ8r5t273619EVlzeHtKuPEVvr8tru1O2iMMU/mMNqHORtztPU9RQBoQeb9ni8/b52wb9vTdjnH41JRRQBwnjv/kY9A/643f8A7RrLrc8b6Xqt3qekXmm6c98tuk6SpHLGjLv8vB+dgCPlPesL7D4l/wChWvP/AAKtv/jtdVGcVGzY0LRSfYfEv/QrXn/gVbf/AB2j7D4l/wChWvP/AAKtv/jta+1h3HcWsnxT/wAijrX/AF4z/wDoBrV+w+Jf+hWvP/Aq2/8AjtUda0XxTqGhahZReF7sSXFtJEha6tsAspAz+896TqwtuFzFlldZIoIIXuLqdvLgt4/vSt6D0Hck8AZJr03wf4PTQI2vr5kuNYnXbLKv3YV6+XHnovqerHk9gDwf4PTQI2vr5kuNYnXbLKv3YV6+XHnovqerHk9gOrrlqVObRbCCiiisxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="
}
},
{
"id": "/page/1/Caption/1",
"block_type": "Caption",
"html": "<p><span id=\"page-1-0\"></span>Figure 1. Fully convolutional architecture diagram (not to scale). Arrows show separate columns that all take the same input. At the end of the columns, the feature maps are merged (concatenated) together and passed to another series of dilated convolutions: the aggregator, which can aggregate the multiscale information collected by the columns <a href=\"#page-8-5\">[25]</a>. The input image is I with C channels. The output single channel density map is D, and integrating over this map (summing the pixels) results in the final count. Initial filter sizes are labeled with brackets or lines. Convolution operations are shown as flat rectangles, feature maps are shown as prisms. The number below each filter represents the dilation rate (1 means no dilation).</p>",
"polygon": [
[
50.0537109375,
352.24700927734375
],
[
545.1107788085938,
352.24700927734375
],
[
545.1107788085938,
416.49609375
],
[
50.0537109375,
416.49609375
]
],
"bbox": [
50.0537109375,
352.24700927734375,
545.1107788085938,
416.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/1/Text/2",
"block_type": "Text",
"html": "<p block-type=\"Text\">our paper follow this method of producing a density map via regression. This is particularly advantageous because a sufficiently accurate regressor can also locate the objects in the image via this method. However, the Lempitsky paper ignores the issue of perspective scaling and other scaling issues. The work of <a href=\"#page-8-7\">[27]</a> introduces CNNs (convolutional neural networks) for the purposes of crowd counting, but performs regression on similarly scaled image patches.</p>",
"polygon": [
[
49.38134765625,
438.1144714355469
],
[
286.875,
438.1144714355469
],
[
286.875,
531.7640075683594
],
[
49.38134765625,
531.7640075683594
]
],
"bbox": [
49.38134765625,
438.1144714355469,
286.875,
531.7640075683594
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/3",
"block_type": "Text",
"html": "<p block-type=\"Text\">These issues are addressed by the work of <a href=\"#page-8-4\">[18]</a>. Rubio et al. show that a fully convolutional neural network can be used to produce a supervised regressor that produces density maps as in <a href=\"#page-8-3\">[15]</a>. They further demonstrate a method dubbed HydraCNN which essentially combines multiple convolutional networks that take in differently scaled image patches in order to incorporate multiscale, global information from the image. The premise of this method is that a single regressor will fail to accurately represent the difference in values of the features of an image caused by perspective shifts (scaling effects) <a href=\"#page-8-4\">[18]</a>.</p>",
"polygon": [
[
49.306640625,
534.4453125
],
[
286.576171875,
534.4453125
],
[
286.576171875,
665.15625
],
[
49.306640625,
665.15625
]
],
"bbox": [
49.306640625,
534.4453125,
286.576171875,
665.15625
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/4",
"block_type": "Text",
"html": "<p block-type=\"Text\" class=\"has-continuation\">However, the architectures of both <a href=\"#page-8-4\">[18]</a> and <a href=\"#page-8-7\">[27]</a> are not fully convolutional due to requiring multiple image patches and, as discussed in <a href=\"#page-8-5\">[25]</a>, the experiments of <a href=\"#page-8-8\">[11,</a> <a href=\"#page-8-9\">17]</a> and <a href=\"#page-8-10\">[9,</a> <a href=\"#page-8-11\">12,</a> <a href=\"#page-8-12\">16]</a> leave it unclear as to whether rescaling patches</p>",
"polygon": [
[
49.08251953125,
667.5794143676758
],
[
286.3651123046875,
667.5794143676758
],
[
286.3651123046875,
713.49609375
],
[
49.08251953125,
713.49609375
]
],
"bbox": [
49.08251953125,
667.5794143676758,
286.3651123046875,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">of the image is truly necessary in order to solve dense prediction problems via convolutional neural networks. Moreover, these approaches seem to saturate in performance at three columns, which means the network is extracting information from fewer scales. The work of <a href=\"#page-8-5\">[25]</a> proposes the use of dilated convolutions as a simpler alternative that does not require sampling of rescaled image patches to provide global, scale-aware information to the network. A fully convolutional approach to multiscale counting has been proposed by <a href=\"#page-9-0\">[28]</a>, in which a multicolumn convolutional network gathers features of different scales by using convolutions of increasing kernel sizes from column to column instead of scaling image patches. Further, DeepLab has used dilated convolutions in multiple columns to extract scale information for segmentation <a href=\"#page-8-13\">[8]</a>. We build on these approaches with our aggregator module as described in Section <a href=\"#page-2-0\">3.1,</a> which should allow for extracting information from more scales.</p>",
"polygon": [
[
308.390625,
438.11541748046875
],
[
545.1151733398438,
438.11541748046875
],
[
545.1151733398438,
651.3159484863281
],
[
308.390625,
651.3159484863281
]
],
"bbox": [
308.390625,
438.11541748046875,
545.1151733398438,
651.3159484863281
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">It should be noted that other methods of counting exist, including training a network to recognize deep object features via only providing the counts of the objects of interest in an image <a href=\"#page-8-14\">[21]</a> and using CNNs (convolutional neural networks) along with boosting in order to improve the results</p>",
"polygon": [
[
307.79296875,
655.1015625
],
[
545.1151733398438,
655.1015625
],
[
545.1151733398438,
713.4069519042969
],
[
307.79296875,
713.4069519042969
]
],
"bbox": [
307.79296875,
655.1015625,
545.1151733398438,
713.4069519042969
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/2/Page/438",
"block_type": "Page",
"html": "<content-ref src='/page/2/PictureGroup/435'></content-ref><content-ref src='/page/2/Text/2'></content-ref><content-ref src='/page/2/Text/3'></content-ref><content-ref src='/page/2/SectionHeader/4'></content-ref><content-ref src='/page/2/SectionHeader/5'></content-ref><content-ref src='/page/2/Text/6'></content-ref><content-ref src='/page/2/Text/7'></content-ref><content-ref src='/page/2/TextInlineMath/8'></content-ref><content-ref src='/page/2/Text/10'></content-ref><content-ref src='/page/2/Equation/11'></content-ref><content-ref src='/page/2/Text/12'></content-ref><content-ref src='/page/2/Equation/13'></content-ref><content-ref src='/page/2/Text/14'></content-ref><content-ref src='/page/2/Text/15'></content-ref><content-ref src='/page/2/Text/16'></content-ref><content-ref src='/page/2/Text/17'></content-ref><content-ref src='/page/2/Footnote/9'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/2/PictureGroup/435",
"block_type": "PictureGroup",
"html": "<content-ref src='/page/2/Picture/0'></content-ref><content-ref src='/page/2/Caption/1'></content-ref>",
"polygon": [
[
48.708984375,
70.91455078125
],
[
286.3586730957031,
70.91455078125
],
[
286.3586730957031,
216.38336181640625
],
[
48.708984375,
216.38336181640625
]
],
"bbox": [
48.708984375,
70.91455078125,
286.3586730957031,
216.38336181640625
],
"children": [
{
"id": "/page/2/Picture/0",
"block_type": "Picture",
"html": "",
"polygon": [
[
48.708984375,
70.91455078125
],
[
285.6796875,
70.91455078125
],
[
285.6796875,
153.333984375
],
[
48.708984375,
153.333984375
]
],
"bbox": [
48.708984375,
70.91455078125,
285.6796875,
153.333984375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {
"/page/2/Picture/0": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADcAngDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDovin8U9c8EeJ7bTNMtdOlhlsluGa5jdm3F3XA2uBjCjt61xS/tBeKz10/Rf8AvzL/APHKZ+0J/wAj/Yf9guP/ANGy15WlAHryfH3xS3XT9G/78y//AByrMXx08Tv1sdI/78yf/HK8gjNXIXxigD2O3+M/iGX71npY+kUn/wAXWxafFTV5seZbWA/3Uf8A+Krxi2mxite2u9uOaAPZ4viFdMuXhth9Fb/GoLn4kXsQJjgtD9Vb/wCKry9dRIHWoJtQLDrQB3d38XdbgJ2Wmmn/AHo3/wDi6yJ/jh4ljJ22Okn6xSf/AByuFurndnmsu5lRgABg9zmgD0F/j34pXpYaP/35l/8AjlQn9oDxWP8AmH6L/wB+Zf8A45XmctVW60Aepn9oPxYP+Yfov/fmX/45TT+0L4s/6B+i/wDfmX/45XlRqM0Aesf8NDeLf+gdon/fmX/45Sf8ND+Lf+gdon/fiX/45Xk2KTFAHrP/AA0R4u/6B2if9+Jf/jtH/DRHi7/oHaJ/34l/+O15LilxQB6z/wANEeLv+gdon/fiX/47Sf8ADRHi7/oHaJ/34l/+O15QFzSbaAPWP+GifF3/AEDtE/78S/8Ax2k/4aJ8Xf8AQO0T/vxL/wDHa8n2mjZmgD1j/honxd/0DtE/78S//HaP+GifF3/QO0T/AL8S/wDx2vKDGaaVoA9Z/wCGivF3/QO0T/vxL/8AHaT/AIaK8X/9A7Q/+/Ev/wAdryUikxQB9g+H/F+oar8Jj4rnhtlvxZXFx5casIt0ZfaMFicfKM8+teT/APC/vFX/AED9G/78y/8Axyu58Gf8m4t/2C73+ctfOVdmGpxknzI68NCMk7o9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvK6K6vYU+x0+xp9j1T/hf3ir/oH6N/35l/+OUf8L+8Vf8AQP0b/vzL/wDHK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/wCOUf8AC/vFX/QP0b/vzL/8cryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvK6KPYU+wexp9j1T/hf3ir/oH6N/35l/8AjlH/AAv7xV/0D9G/78y//HK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/45R/wv7xV/wBA/Rv+/Mv/AMcryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/AI5R/wAL+8Vf9A/Rv+/Mv/xyvK6KPYU+wexp9j1T/hf3ir/oH6N/35l/+OUf8L+8Vf8AQP0b/vzL/wDHK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/wCOUf8AC/vFX/QP0b/vzL/8cryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvK6KPYU+wexp9j1T/hf3ir/oH6N/35l/8AjlH/AAv7xV/0D9G/78y//HK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/45R/wv7xV/wBA/Rv+/Mv/AMcryuij2FPsHsafY958BfF3X/FPjOx0e+s9Mjt7gSFmgikDjbGzDBLkdQO1avxM+Jer+C/ENrp+n21jLFNaiYm4R2bcWYcYYcfKK8r+Dv8AyVHSPpP/AOiXre+P3/I6ad/2D1/9GSVg6cPbKNtLGEqcfaqNtLEn/C+PE2OLHR/+/Mv/AMcqE/HvxUD/AMeGjf8AfmX/AOOV5gjADBprMvauj2FPsaKjDsen/wDC/vFX/QP0b/vzL/8AHKP+F/eKv+gfo3/fmX/45XljEHpSUvYU+xXsafY9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvLfloyvpR7Cn2D2UOx6l/wv7xV/wBA/Rv+/Mv/AMcpf+F++Kv+gfo3/fmX/wCOV5tBAHxgVcFl8vSmsPT7GUvZR3R33/C/PFWM/wBn6N/35l/+OUn/AAv7xT20/Rv+/Mv/AMcrzm4hMZ4FUW60nQp9i406clex6n/wv7xV/wBA/Rv+/Mv/AMco/wCF/eKv+gfo3/fmX/45XldFHsKfYv2NPseqf8L+8Vf9A/Rv+/Mv/wAco/4X94q/6B+jf9+Zf/jleV0Uewp9g9jT7Hqn/C/vFX/QP0b/AL8y/wDxyj/hf3ir/oH6N/35l/8AjleV0Uewp9g9jT7Hqn/C/vFX/QP0b/vzL/8AHKP+F/eKv+gfo3/fmX/45XldFHsKfYPY0+x6p/wv7xV/0D9G/wC/Mv8A8co/4X74q/58NG/78y//AByvK6KPYU+wvY0+x6p/wv7xV/0D9G/78y//AByj/hf3ir/oH6N/35l/+OV5XRR7Cn2H7Gn2PVP+F/eKv+gfo3/fmX/45R/wv7xV/wBA/Rv+/Mv/AMcryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/AI5RXldFHsKfYPY0+x6Z+0L/AMj/AGP/AGC4/wD0bLXlK16t+0KCfH9jgf8AMLj/APRsteUKa8k8ssIasxtVNTU6tQBoxSVdjn296x0cjpUyymgDYF16mo3uCe9Z4mpDJmgCeSXNVZCTQXzSZFAD4LV7yRIsqi55c9qq39strdyQJKkyocB06GrRmKpheK1PC+nWV1q8R1PJtAcyBTgke1AHKMKjNdH4osbSHVbl9NGLMN8il8lRXOkUAMNPWCR42kVGKLwSBwKTFW7O5ktw6Kx2P95exoApbaeqZ7VaaNWbIqW3hG8ZoA6PwP4LfxRqi2xbZHglmPFUfFXhmTw9rE9kx3CNiAw6EV0Xh/Wm0YboW2sRjiqfiHUv7UlM0p3OepoA4cx4qxa2jXEyoo5JxU7wjccVp6VshnR8DIOaANrXfhzd6L4ftdTlOVmGcenpXByxbGIr1zUvFEmoaMtnO+6NRgA9q821CFd7FaAMVlphFTuuDUZFAH094N/5Nxb/ALBd7/OWvnGvo/wYN37OhHrpl6P1lr54Nuw7V34P4WdmFaSZXoqQxMO1NKGuw67obRS7TSYNAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA7r4O/8lR0j6T/APol63/j8CfGenf9g9f/AEZJWB8Hf+So6R9J/wD0S9dR8doDJ4vsGA/5cFH/AJEeud/7wvQ5pu1ZN9jx85ptWntn96haFweldFjdSTI6KcUI7U2goKKKKANPT5BtAYitUMu3tXNxyFD1q2L3C9apM461Bzd0W70jPGKxm+8asS3O89arUmzelBxjZhRRRSNQoHWilBwaADFJTiwwaTt0oASiiigAooooAKKKKACiiigAooooA9P/AGgv+R+sf+wXH/6Nlry2LaHDMoOOx6V6p+0BgePLEkZH9mR/+jZa8s+XAIFeIeOK6h3LKAuew6UrR+WFO4EnsO1KqgnAPNDAhwpzn3oAcgY52qTjk4FKHxT0keJTjjcMVCx59KAJfMpd9Q/xYU094pY0R3UhX+6fWgB+6l3VGEPk+ZuGN2MZ5qW2ge5mESFQT3Y4FAAGyavW9z5I4OKzjlGIPanEsEDdj0NAE9zd8tlVcHs1Y7fePFWpCX6AmqrdaAG09etIil2woyaUUAWENTxtg1XVD5e/IxnGO9Sx5ZgM9fWgC8s/y4zSPKWHJquwMbFSQcHGR0o3cUAPJqSOTaar5pN2KANB7o7cZ4qhPJupWDiNXP3WOBVdzmgCtIMmoiKsFSckAkDrURFAH0/4DTf8AIk/vafdj/x6WvHH0v2/SvaPh4B/wou1B6fYrr/0OSuBkgj28YrpoV/Z6Hl4/GTw84qPU4qXTcdqrNppz0rsJbdc9BTEs1Y9K7lXja7IhnMktTkG0xvSq8mnMO1ehx6KZBwopk3h9wP9XWX12hezZtDO31R5q9oy9qiMLDtXdXGilScpVCTRzn7tdEZwlqmehSzejPqckY29KTY3pXUHRz/dqNtII/hqtDpWY0X1Ob2mk2n0rfbSj/dpv9lt/dosarGUn1MLafSjaa3f7KOPu0w6Yf7tFhrF031MXBo2n0rZGmH+7Ui6Ux/hosDxdNdTD2H0o2GuiXR2/u046QR/DRoZ/X6Pc5vYaTafSuiOkn+7TDpLf3aLFLG0n1MDafSjafSt7+yj/dpP7LPpRYf1yl3MLafSjBrbOmMP4aifTmHaixaxNN9TIorQaxYdqjNm3pRY0VWL6nXfB3/kqOkfSf8A9EvXo/xasDdeI7NwucWgHT/beuB+EVu0fxN0piOgm/8ARL17H43WA6tB5u3PkDGf95q8vHYh4eaqJX0PIzWcuS8HbY8Sk0vB5T9Kpyab1+X9K7u7hgJO3bWW9qjE49a2o43nV2jwKeZ1YO0mce2lk9j+VV5NIPpj8K9Ag0kS9AKnl8P7VPSiWY0Iy5ZPU7IZzV3S0PK5tNZMkH8KpMjKcYr0W90gL1ArFm0hN/TmuuFSE1eLPUw2cU6i945PB9DRg+hrpzpAx0/SmPpDZwoH5Veh2LMKL6nNYPpRW+2kPnlQfwpn9is38NFjRYyj3MOitv8AsRgfu01tIYD7hosNYui9mY1Fag0lyeFNTx6MxI+Qn8KLDliqUd2YoBPQGja390/lXTxaI+B8g6elObRXH8FLTuc7zKhe1zltpHY0ldFJpLf3R+VUZ9LkGSB+lOxvDF0p7My6Kne0kTGQefal+zMBlsge9Kxvzx7leipzGucGgW5bpRYOZEFFWxZN3pxsGFOzF7SPcpUVObVxRSsPmR6r8dohJ44sen/INTPHpJLXmcOlm4ZWReMGvV/jVF5nja1zepb501AAXwSfMkrz+1ttQ81I7e7imbuodSfyrxDyTIOl3EBwzR88g7qU2E7wl5ImBQjL+ta8tjqLF1a1ic+gwT+lWn027gsRM0AKsMNGjNuHHWgDl3jlhYbgc4oMDGIOV+UnGa3AzqVMtrNjB++u7/CnyNZTptO6JsbsGPA/Q0AYCI1vJiSPkjIz6VNcXPnReWR90cVs3scOolmAijdAAPLOAfzqJtGihLLNKZAVypiXPPvQBz6Lhee9PUY5HT1rUFnLHEwCoULYbIOVNXp/Dr29rBdNHIUkbBjxnb7/AI0Ac4UfIOODStuA24rov7JmSIhbVyG5JMZytSafoqtNukRjCAwZmIBbjHGfegDlM7MjoTUKrnORXSXuhXNrDE8kOIpGIR2xg4qCfQLyCJXNuTlsfKe3rQBgCNieAacIyHxjNaiQuIWR4yGjbgY657VNcWIWfY0bKWAOFB4BFAGegCrytTLtRQGAUHnkVca1YbY4Y5Sf4iV4q9baHJdu4mUrEiFywIJ+nFAGDKc9xikRMjORircljIp5J24yMggmmrYzGNnwFUcAE0AQhFPG4Z+tI6qhPXpTjbyLyfu+uKTY2Nx6UASbzJGBjgD0qo20n2pw3ElRTWUFSADnPWgBwkRYiuOo61T25qZgcY64phz3GMUAfTngNtnwGhb+7Y3Z/wDHpK8u/tEEfer07wZn/hn8Y6/2def+hS14grSe9d2Epxknc5MThI12nLobrXwJ61NBeqGHNc/+8PrT0aRT3rrdGLVjknl1Nxsmd7YarEuAxFbkd9aSpyVrzOGeQVdS9kUda8XFZLTqy5k7M4vZVaGkbNHa3S2kg421Q+w28j8Yrnf7Rk9ali1JwwOaVPLqtKNozOacJt8zidMmhQyLkAVWuNBRegFQ22uOigEipX1kv6VyKnmEJ73QOVLl2aZRk0bH8IqIaRz90VfOo7qjN/8ASu2NTFWszH2j6NlOTSgo+6KqPp6g/drTe8LCoDKSa6KdSt9oFWqLZlNNODH7talpoXmn7oqOKTBFbVnfCPrXNjMTiIx/d7lwqucrVJaEsHhVSuSBUF14bWMHAFbsOrrs7VSvtU3A4xXzdDGZpKtaWx6Vang40rxbuYK6DuOABT28NnGdoq7BqOH5xWj/AGipTtXo1sZjqclY46SpSWsmcw+glT90Uz+wz/dFb8t6CahN8B6V0QxuLa1REnFPSTOfl0coPuiqMmmjP3a6Wa7D8cVUOG7V30cVWt75n7ecH7sjnH00f3agbTR/drpJFUdqgKqTXbDEyZvDMKy6l74a2Ih8e6dJjGBL/wCi2ro/ipfG28R2iAkZtAf/AB9qpeAVA8ZWJHpJ/wCi2qt8aGceK7HbnH2Ff/Q3qVatWXN2PUw7eMw7U+/+Ry8mpFv4j+dRrf8APWsTdJ6Gk3yA9DXWqEErAssp2Ous9W8sjLd62I9dhdBuOeRnkV5/HLIPX86tJPMAOT+Yrir5bRqu7RzTwMqfwSOtu761ljH7vnA/iHrWbIYXkyFx/wDrrGNxLjqfzoFw+eaqlg1SVosweCm9bm6kUDDkH86fJb2+7jrn+lYi3hHGB+RqRboMRwPyNN0J3vcylhasTTFjHI+M8n2q5baGJW4x07qazYZvnBGOvpW1Z3ap1IHH9wn+tcWKlXhH3GYqTUrSegTeHgiZ+X/vk1lXGlhM8D8q3J75GTAKH/tmf8aybi43E4x+VY4Opin/ABH+A5zSf7t/iUE04FgNo/Ktey0PzCuQvaqEdwysD3+orWttWkj2856dxW+MnieX91uCqNy/et2Nm38ORfLlV6Cobrw9GM4x27U0a63ygnsO2ahk1gP39O1fO06eZ+05pSOydTB8lorUxrjTI42wcde1Uxp8Uy/dY/d9O7Yq9cXjO2QSOf7wqtDdOvOW6r/GP71fS03X5Lt6nFGclqmUptETbGRGx3BCOR3ziqF1pQRFzERkf1rpjesYoQGbhY8/N6Zqndy71X6f1rajXrc1pHZDGVYtWf4nLNp4DfcqeDTQxHyVpbAzdO/pV+0g3EAkD6111K3LG501syqKJmppOQPkFJJpWP4R+VdbHbAJyV/75NV5o4/TP4GvPjmDlKxw/Xa61bOObSxn7g/KiujkjTPANFdixDaN1mtWxvfGTQlvvEseoyRhorfTk3nAJAEj9BkH+IV5Rpeny6nrs/2Z5EjijLl+hAH4/wBa9E+OcqL4wjjad4nOlR7QDwf30nH6CvKreecEiOUjzP8AWY449K8w+iNNdEaZri6tZnlEQ3SAjkD161lw3V5BdrOkzoiOcFTnBHTirtpdzWrXUMRIEsZVsc4BrLJMOYAxdQ2Tx2oAvDXNYe5jkNzMzyvkqThTV1/EGp2N06XEMcmQRslAYDPvVGNV3LyctyFHUCoZ5zcNHG+SgOBjrQBdXxJM0eZrG2cg9fLwP0q2fEunS7PN0oLhfmZXPJ/wrHHmW6NEsbNk8A1GiyznCQEheH46UAdBBq2mzMHb7REpYgj7yqDW4nivRbBbqIyXF69ygBkK8JjpjNcThmWVkUhH4z2HNJCkluzFgGUqQeMkUAbUmvWLyMGku3z3KirLanos8JYSyqQuAkibj2/nXNyKnIUlsDLdqFk8sMWJ+Zei9hmgDXl1u2O4K9wiHAVCOF9cCprfXbR23Nd3SM3y7mwQB9KxEuZYvLlZMRlwQxX0p9zfLNM37sEk9doFAGw2oaX9qKm7nkVsYZI+B9c9arXGpaashVGu2J6swHzfT0qKWGdrENBGixIA5foRniqsY58yRRIw+Xjk0AakNzYxTMbmC9iBXcOByfanweIILVJhHaXJ81SpJYdPyrON7LcCKOZmIUeWM+lPjAhlxIHGRgMvp70AOS4s50Lsl0CBhQcHP49q3tD1Gz0+8NxLZNIrwmNUJDYOevNc+0NzbuVUK2FDE9fl7UkCP5skh3yIByVPSgDt7jxHpE1sANMwQeTsXNcVrF3b3t+8kayRR/wpsAxSg+XIrrlgw5z1+tE0huAYxCeOfqPXNAGe/kA4WRz77acjRlhiQg+64FWfPAG6OALjgjGRT1vFeSL7VGphiOMKMZoAplIskfaFB+lOjgSZtwniLAfxVYC27W8jyKMclcdvxquY7aQMd6pgYBA6mgD6N8GqW+BiqSpJsLsZXp96SvI1sRnpXr3ghVX4IRBPu/YbrH/fUleaIVzXVQm4xdjyMzrzpyiolNdPyOlKNNyelbEJQ4rQgijYjgVnVx0qe6PIWJqye5gxaQzDhTUj6S6jpXXwwRhegqRoI27CvJlnc1K1jo9jVkr8xwT6ewPQ0iWDk8A13J06Nz0FWLfSYsjIFVPiGnCN2XChiZvlTOHTT5QOhoNs6nkGvR20uJY+grA1G2iiJwBWWEz+OJnypE4nBVqC5ps5pIGNSfZHNW1ljVqtJPFjtXpVMTUWyPPWvUz47B2qZdMY1e+2RIO1Ojv4y4rlnicQ9UjRQh1ZHBorPVwaK61p2V7DgdK0RewH0r5zFZrjYztynsYfAYWcLuRhxaRJjvUN1pL4NdTHdwAdqoXt7CM9K5aGZ4udX4TorZfhYU78xy66W4arkWlSMKuR3sJftWva3MOO1duMzLFU1flOTC4GhUlZyMBtGfHeqNxpjpmuyuLuEL2rEur2EkjiowOZYupLWOheMwOGpL3ZHPLp7s2Kvx6OxTNWoruHf2rRW/hEfau3FY/FqyjE5MPhaEtZSOWu9PaM1SWzcnGK6G9vInPGKqQzxb+cV6VDF1/ZXlHU5KlOCnaL0NHwPZPF4rs5COAJP/QGqD4t23neJrNvSzUf+PvXR+FZIm1q324zhv8A0E1nfEpA3iG1z/z6j/0Jq6sBi51LzkrNOx6a/wBnwbcH1/yPMP7PGOlN/s/npXSLChAGB+VBhT0H5V3/AF1nAsbW7nPx2HHT07VZj0wsBhT+VaoVB2H5VoW3l/3VrKtjpxV0ifrNSb3OdOktj7j/AJVC+mMP4T+VdnsjYfdWohbxu33a5Y5tLqi+aqtpHG/2Y/YGpI9PYHnH513IsIvLzjmsu9jjgJxVUs39tLliiqs68Y3kzLt7HcRnb+daKWKAgHb19faqQvfKbqaf/ahZvvH8xVVY4ibutjkWurH/AGZSWAI4A/i9jTGsdwBB9O+e1RR3ZLN8/Ydx6GtO2uVEY3N6dx6VFWValqgUV1M0ae2TjP5VZi0yRux4NakN3DxmtKC5gyOnJHauDEZjiILSB0UqEKj1kc+dLk+XPoO9Kmln0H4muhe5h+TDDkD096h+1xf3h09RXIsyxMl8Js8LST+Ixm0jjt+dRpoxI4I/h/nW01/EpxuH6UJfxN0YDkdCK0WNxij8JPsKF7cxhyaSUVcsOi96o3NjsHVT9K6Ke6Xavz9cfxisa+uwQOc8f3vevQweIxE2uY56sYxfusx2g2t+NXbSHJHzAf8AAsVVknBcn+tT21wVIIOPxFetV53AmXM1qbQtv3f3h+DVnTRkNjn8qurejYMkfmPSq81whk6DpXmUfaqTuiJcttCqIWY8fyoq3BcJz2oraVaonaxKS7h8cntR4stUlh3yvp8YDE4AXzJP64/KvKIVLXqRRJy/HB6c16Z8diB4/wBPL42jTExu6A+bJXndmlleKPKuJEuFOflIUntj3pn2w+/Kx3QXasUynaxHcfhUKXcEEgkABY5yX4DCrM9rZTq4kkkSaFcnzOd5HXBFU722sVlEcFyJEVON6bTmgBbh45LhXQgMyjdg4HA7n3qxb/ZBLDCIgFDhpJif4fak1C2ltbjy7iJoXKrhccMmODxVR8xS+TFnaQDtPXP1oAtX5t4753szJJADw7LgsPWrNpdPp1k89vsIlYqW9SB0/WslAv8AqmO7aectjH0pxlWJWCOV3NnqfzoAsfay0bqwAVySRjGD60+zuIoLqNpGcW8n+sIXPFKb61EeEhkLbMMxHOfUGqMUcsoaJAwUnv2H4UAXtSjtUcS2yslvIeCeT9KzWkVQVJY479qmSOWWUQQ7GY8ZI/U+lQmOfzHRtvyHBwoIzQAG5ZY0RizxL8wTPAPrU5JdEldNqkcEDNQLBdMxUhhjGc4GKmh0+6uPLVJixckABvSgCwktuyIJI5CMYxv6n1pzXTx2kaImI43JDKMEk+p/CqbWN24kw0uY+NpqVNHuZN2HbC4zhs0ASW9zEjkywlxj8QfWkuJxNKiwiTp0PrVdtMn2lxKxXjgZzSDTbgx7xMVIHIycUAXLa+uoZvNyQehLDIFOTWLq3ysLfIzbmGzG4n1qslnKG2mR2YkYw3BzWhZ272Vxb3geNwrhgkh3Zx6igCpLK80okJcZHORgfhQrKsyqWcoOM1q6pqM2tyJK0NvAyAjECBARnqQKzBE+x2eRhtGQByTQAwSEbvLJOcg8VDKWJO8EfhUiQzOx2zMmQSuaU20mdss778Z5H5UAMgbGFYAqOOR1p9yIgURUGV6tnrTfIfODOpJ6ADJpPs0zK5EqZH8JHJ/SgD6P8FHHwNjP/Thdf+hSV5Us2O9ep+DQyfApd+NwsLvOP96SvHPO967cLHmTPOx1H2kka8dxjvV2C9Kkc1zq3HvUyXJ9a0qYZSWp5NTByWqOxh1IY5apG1NQfvVykdw3rUhlc9682WV03K7MP3sdLnUprKg/eq3DriD+KuJ3vTllcHqaxq5Jh5rVGka1eGqkdxNrymM4audv9SMzHms8SMR1NROCTVYPKqGGd4oiriKtZ2qMa07Z60C5f1NN8vNOEVetaIrU7AZ3Pc05JHz1NKsIzVyC2U9qynOEUZylHZISO7lQcMasR38xP3jSPbqtSW0KbucVxVHSceaxmm72Rcju5yvU1WuZp2zkmt21tYmUcCpZNNiI+6K8NZhQpVLOJ3/VKs4XTOTWSYN1NaVtdTAdTV99OiXsKiMccZ7V1TxdKurKJgqE6b1diG4uZivU1jTzS7jkmt5zEwxxVCaCNjxitsJUhDRxIqpt3vcyxcSDuaU3kuPvGrJtQTTlsN3avQdWju0Zr0KDTyN1JoWZweprUXTPalOmj0pfW6GxXK+xqeA7qR/F9lGScESf+gNV/wCJ0mzxDaj/AKdR/wChtUPgqz8nxdZP6CT/ANAaoPi1MY/EtmM/8uan/wAfero8lSXubHp0abngpR/vf5HLC6weSakW6BPWsP7Qc9akjuOetdTwyOWWDklc2vNz3qxDPtPJ71jrMT3qUSkd6wnh01Y5XTlFm39rGOtNS9AYcisfzjjrTfNPY1gsFGw/fOoGpHyeCOnofSsXUbl5GPI/I1WE0mzAP6n0qKXex6/qaWHwUKU+ZFucptKTKUrPu61ApbPU1cMRJ5/rSpbjd0/zivVU0kdka0IxsU42YHq3b+VXopGwOtMWAA9PT+VWoYQccVFScbGVerCXQVZpB61Ot1ICvJ4IqaO1BHIpTbqCOP1FcUqlNu1jjuMFzIxXnoBR5kpH4VPDCm4VejtI2A47VzVK9On0CMHLYw3eTNLG7571ry2KZOF4+lRLaqvarWKpuOiBwa0M6R2Kjr27Cs64kIH/ANatu4jUDp29axboDn/GuvDSUtka0Lc9mUmkOT1/KpY5G4xVc/f7fnViIZIrvaVj06kYqOxZE0nHWlMr7uc0Kh29qcEz1/lXO+U89uC6DEmIPU/mKKsJCvv+QoqJThczlOF9if49SbfHFjuUlF0xTx7ySD+leRRyDeCq7TnPy8YFer/tAeY3jezRWwv9mRlv+/steVGDy4VZs88jFcJ9iNkm/euVd8NwR7VJCTIuUhJIwOT71YitopItxOyRv9WSOD7VLGNw8mPDs+AAowQc80AJNcag2BM20bduX5IA4piWc15KoeYZddwYnoKY8ruV8zcnzYXPcVJM8WwbR93C7lPJoAjW2xI0YwzAgVpT28e4LCFJjXkNwD+P+elVLUtFvkOMlsE56ChJ4235LYVhz6rQBJCfMbaikRbfmYcnbU7yRQSs0EgPI+UcZFV7qciKC3tWVUkX5nHTk5xVONnSQRIhMmfvDuKANOJy9xEI22SMGyzHoKltmjXnYZA5y+7g5zwfp0rOGpt5y+Z97gAEdh2NWPt015LcxrGBI7KVG3BJHGB+dACXFzFJM3mJIIkPAHBrSgkaC088KkK5BVcZbdjr7VmR+XPeXAkkKCAjgnJ9605FeaOUBkZmTk46e1AFV7y4dDnjzDuXB5Y5qSS6nuoZYHbyZNzOzE9TgZH6VUs1LXD7V3+SuS7HhfTFRmUpLcSAFIowEO47ssR/XFAGtpsiyO8d0smxPlKr93mpTbxWYdJVChclM8lgemT2rMa5MpVvJeCNyNzf3vpUy3bXV7NamJwvlkx7hk8UAX7aWOSNCsqGTccI4BxzgDNZt0t2l7FK0SrHEcdeGyc0RLOk1rPa24mWL76r/Eal1DzZpShRo4eu1DkBuKAJbceayyySxoqck8YOex96ej28UDSxktK65YPgZPtVCNYJJpIFOUK7lDdCfWnX1osiwSySeUiqFyvNAFpLXMYuJS2CPnZegz2qGc+fMJ7YfIRgq3UAUtqklxb/AOkzAwEFIweOnGfrVc20yJK+VwuOc9AOpoAfJFGFaZiI2/hZW6Go45kiDlQrsODk9f8A69K3lFXvIiGjPyiMjofWkijtoGjmlwVkG0qOoNAH0N4VZj8CiWzu/s67zn6yV4gNzV7l4UTb8DynP/Hhdjn/AHpK8bSAV6GDdos5sRVULXKioxNXIYScVKsQFWIgoronPQ8uvim1oPht84q6lqMVHHIFqY3QArhqSqN6HkTnKT1GvbqKjMaike5zUDz04Rn1CMJsmZlWoGlGarS3BqsZjmuiNLudtLCN6s0fNFHnD1rNM9N+0e9X7I2WCbNhZuatRXO0dawUuPeplueOtZzw6ZhUwcuhry3ZPeo0vSrcGsp7jPeohOc9aSw0bWsOOCbWp2Vlq5XAJrT/ALYBTqK4SG5I71aF0cda8yvlFKpLmsR+/pe6mdHcavnODWbNqTMetZMlwT3quZzmuijl1KmtEJUqlTWTNf7e3rR9vY96xzNTfPNdX1WHYpYNs3FvTnrVqK/APJrmxOaeLgg1nPBwkS8LJbHVjUl29RUbakM1zouT60huD61zrLYJk+yq7Hf+Cr3zvF1knqJP/QGqh8Yc/wDCVWWP+fJf/Q3qr8O5t/jnT19RL/6LatP4sR7/ABPZn/pzX/0N63o0o0aqS7Hq4a9LCycu/wDkebiNj61LHC3oaurEoFSoiiuqVU454vTQjihY46/5FWxaGpIii+lWDPGPT864qlad9EefKpKTKRtwO1MMeO1WXmUntUJkB9KqMpvcSchnQU1n96Gaq7NxWsY3NYQuSbvemmXB61XaTFV3l68/rWyp3OunhuYuibnrVqGbkViCbkc9/WrcM3vROldDrYWyN1LnCngdKie66/jVA3HBqu9x159a5o4ZXucsMNKRrxXRD9e9advd8fe7Vysdx83Wrkd1gdazr4NTQTozpvQ3p73GcN+tZ73pz1FUJbrPeqrXHPWijgoxQRoznqzRkuSw6iqFw+aaJge9Mdwa64U1HY3pUOSRB/HVmLg9KrGTBqVJ+On+cVtJOx2VYya2L6txTwaqCYU8TCsHBnnSpSLiviiqvmjHWio9lcz9i2S/tBn/AIr2xBDH/iWR8Kf+msteZvOoVQu3Bj5xn5a9N/aDkJ8dWEWRt/s1G6c582XvXmNpaQLNm6EioRu2dCwrgPsBYQJMAOTtxt46mpJrjy7qJUJUAY3JkYP41HL9lsDM1tcS5kAKMhxt9jVZ3uRBuV9yN94E5zQAXF400Sq5LMqhQT7VdkugYo/KhjR0QZAJy9UzaXKDe8RiJXcu5cEg+lMtY5pJSseQ4ySe4oAv29q91Arxq+5sscc9KfzbRor8K4zzz9abY3dzbSojPtVkKKGbbjNEtzd3DPEm4nHlLtG7I7gGgBzN+7ggQDaxY7gen1q9YxRwWpnbaZGcqr4yAPWsoRRW6zFWLFR8p6EeoqWa6ElmsYzhU+Xtk96ALsNnHdNIMqJI/wB4HfjIHaqkN8z68AsY3yPgemfX8KZau9tdSSPNwITjLdfan3+yyWyu4nV3dMv35P8AKgBstvJ/aXkK6fvGw3bJFbGl30FkLl542ZhkeUp4PHY1BqUEMsKamsgSfdnAIYAf1qD7WJNLSxlZQzuW8zoeaAJLJJr8zNbW0oaRCx24A25qQaW9xYN5LKJGQtMjkDHOAfrxWfp2qnTrs2wJdMFMjqfQfnWoy3mmSTRSMxuLoZi8twVGOcNnHagC1ffZ9ttC1ztgjIXDY6gdTWdc3aHzN7O8mdkc65A2+maisLKC9s7u8l8x7lW4hQ7h78dcVetUiWaONvJurdoywTZtCN780ANgEUYE4n8l1cIAvK47mteeH7NpJVpV2yRgjjBzj/69YeoLJpVokEyRpG7eYFjcljnpmtq98Q6TGhhRkdnt1+bbuwccj2NAGUdJlmheWK3KuwAXJ2kAd8H1p96rx5tDKibFBZOuDWdPqLSNbtCX8zaA6gn5sVG6/a76W7RDHs2743PegDVGlXv2YB7qFY3jLFv7pPOPr/hUel2bXtlP9qulQKccj19/fFU9U1W5Fu9o6qoyCCDkgenFWrSOSy0SJ1AmST966vgbT6nPWgCYW9r5knlh4YYSAUccM1PuLYSuALdsFd2EHK47+lOCxxWcN9PcHddPtaPOPk9cVKUt2v8AzfM8+1iXDBgVyPw60Ae4eC8D4FJjdj7Bdn5+v3pK8i80CvZPDk1vN8E3ltV2w/2fdbR9DIP6V4YZveu/BxvFnJiKPtGi6Z8UC596zmlpnmnPWu3kRksEmjaW596GuPestJ/elaf3qfZoxeCV9i8Z/ekMuaz/ADvelE1VyGiwluhaZs1CzYpnnComkFUkbwpNDnkqLzfeopJKgMnNM7YUVYvLL708TVQWSpA/FApUUWzNR5tUWlxTfNpAsOjVjmqys3HWseOWrAm460nG5y1cKmy803vULT89aqNN71A0xoUR08IjQM9J53NZ4lJ71KrZp2NXh0i+stOEtUd+BSiWixk8OmXxLR5tUfNoEtLlI+rHdfDR8+P9OHtL/wCi2rf+LL7PEtn/ANeY/wDQ3rl/hfJu+IWmD2l/9FPW58ZJNnimyH/Tkv8A6G9cs43xCXkFShek4HGm4xQLr3rL80560wz4zzW/s0ciwKZsfaj6mkN2fWskTk96d5hxR7JCeAijT+1c9aeLkZrK82j7RjvR7NCeBT2Rqm4FQPMKoG6GP/r017kZx/U+lCp2KhgWnsWpJKpyS4zTZJxVOWXrWiVj0KGHsWRNz1qzHPjHNYwl5qwk3Tmjc6KmGTRrG44PNQtP161SafrUJn68+tFkYwwiRppPz3qwk5x1rFjn561bSXjrQ0mTVwqL7zHH4VXeYg1GZP5VE5yaErEUqCRaS45qQzcVnbiPX86cZeO9Fi5YZN6E0kpx1pq3BA6nr/Sq8jblNRf4/wBKZvGjG2pqC4O7rUyzH1rJVuetTo/v+lKxz1MNE0jMcdaKp7+OtFLlMVh0b/7Qxx8QdPIGSNMj49R5steZXFz5jxkvtO0D14r079oTyx8QLAvk/wDEqTgf9dZa8muGSds8pxgGvCO0mmb7TEoQhVUck96dGsk1kqxID5Zw2OrGobVHe1l2DJXk8U+wuXtHcliu4Y9qAL4vJZrnfIrOyKMAnIAFRWEiT302crvU9KgkcpJ5qsctwwHcVoeWiW0EIHzZyrDrzQBJZ6ZbXJmS6kKkKfLYN0PbNQWMcmlOklxIhUyfKmc5BBGf1q3qemNbyb7YttQAynPTNadnpEY02eW5gDAgeXvzx6kUAczcXkcd7MpVWXdkGt22EUGnR3Dxxs0gIxgEAfT1rlmg/fMYnBKZbBra8P3EV1fQw3QwqK3HZj2oAlsvDM+s30/lXUUMcab8uf0qGPS3u0ltri4/490JQKOCc4rW03R5Lhbu5tLmNmjcoLbd8zD1x6Vv6R4O1CHWtNkvULWUm4zbDx0zt/SgDjrDTp7zTpXZisUPAx3NWodMtZdNt5bgbfOcorq3IP0r2afQtBligtoIkgVSR5aj731rgvFvhqDSr+zNoxSByXVR0BFAHG6jZR+H7xWKiSRTuRqfc6umtXNkiQyeYxCykds4zj8q3bqW3TVxPdLFcJcWpEYIzg965ryZ7C3DJEVikYsjge/rQB1V1YiC8J06PyfOi2gKMbyPTHeo7vw9bW2gmWaN4r/aW5yCT9KdF4jtoV0xZYmLwBZMqeSfStCbxvY+Ib+SDU9KMLsP3bOx6DsaAOchWC90iC4vIA0vmqhOedoxUviXw2sWoJHZrGFcEgDqqjFaOl3Gk6NqF/feWtzamPEduORvyOlPttdF7P8AaWsWB2uoG7JUY9KAObvXsLE2z2n/AB8Qgbz/AHjishGmuprmZ5gu8bjnua6Xw9p66hqV1fy2ZFpHk5boD+PWor3Rze6gyWMapaSn5nHOD6+1AGTeQ2n9lW0sW8zOo3H8TmnaXexYe2v0DxhcpvzwfSoXtUt9Q+wRXAaRZdodvu9quavaW+manHZmRpCrK07cED6UAbEL2eo6UltOoEqZCN0OB0qrJLMktrYmGSEKQuXGN4NdRdW2iJp8N1DHGDwQd2K53xBrMS6hEIgs3lfMcn9BQB7x4cijt/gdLHE25F0+8wQPeTP614H5le6eEZ2uPgC0zgBn068JA7fNLXge6vRwXwsuEbljfTS1RhqaWruLUCYSY70GX3quXphkxSuV7NMsmX3pPN96qGX3pPN96Ll+yLRnx3o8/PeqLye9NEpouV7FF13zUW6oTL70wy0rlKFi0HxT/NGOtUDKaBKaLjdO5cZ803JqFXqQGgOWxMj4qTzaq7qN1O5DgmWTJTC9Qb/ejdRcagWA1TI9URJjvUqS0XJlC5aaSm+ZUJem7qCVAn8z3o8z3qsXpvme9FyvZnf/AApfd8R9LHtN/wCinre+NbY8WWIz/wAuK/8Aob1zXwkfPxJ0se03/op66L43HHi2x/68V/8AQ3rmf+8L0MJx96x51v8Aeomemb6azZFdQRhYlWUCpPPGOtUyajL470i/ZJl1rjjqKia496oyTEDrUfnZouaRoJF4znHWmtOc9aq+ZQWpXL9mi005NRM5NRFjRuouNQSJM0okxUfUUh4FA7ExlPP+NQtL15ppbnrULE80XHGKLCS89atJPgdazV61YUmhMJwTL/n89ad5me9UgxzTw5p3MHTRaMnv+tMMnv8ArVcyN60wuaLjVMub8inAA/59qpLL71cjZSP/AK1BMo8o4qBSBttKxXB/wqB2AP8A9amTFXLnmfL1oql5vHWii4vYne/tDQCTxdYsqjzP7PQZHX/WSf8A168fD5t/LYEhfXtXtXxteP8A4WVp0Uqgo2mx8np/rZa8vtPLW8vrOVlUSLgAgHOD614BgZMVzKtm0KsI4zyQOpqOWOH7CJBNmZm5THSoblDDM8fOFPGavaFpy6rfm3LsvylgQucUAS21vPcWzWaIhfaHLZHTrWnbeH9RFlb3cU8Db3IBZwCmPXNZ8AbTNVbziGGOCRwarT3Mc88x3OoLZXaeBQBa1a5vpJ/MuHQOny/J3x3960NAm8SauZ49OPnBEAcSEYAzx171TtI7G6t0+2XeGztCAYP4mtbQJ7LQiru87s0m47VygwCB+hNAHMW1uG1Jre7kaEgkPxzn0q9ZGOx1aPbG0gLBfm6kH0q1KunJOtxDmW4a43ksSBgnp1rVuLnSpb+KcqyohDOQckYoAn8S6Yui67BLYtJHHPFvUOeQe44ratvHzWdolpeqTImJFkTpgetY3jDXrPVbSwltGZmik+YlcYBrmdUldziKMlI+C4HqKAPWpbu4nEd0q3EexTIrr8wAP0rm7ldY8aXLW9jMqLZp1uG2s2aq2PxGgi0AWMltKJQoQ7TncMdc9qteEtZNw13G9quzcCiNyw96AOBvbO90nVntZZf30BxvDZA+ldzreqWKeFreyhWKS4eMFpIxxmuW8TTx3eqyNDF5bISrr6kd8U3w09suqRNeAGDn73TPb9aADRYGbVIbl3XbC4Ownk13Pii0jutNhvLbyo7jdkNIeSPY+lcTevLd6zNJZBpHY/dQZzWtqU81z4RgjlDxz27lJA2QQDQAzwxbzx+Iobm6WJYkLHnlCcdh3rZ8YXaW8kd7YOkchG1jGgC7R2x+Nc/4RtE1PxJZ2dwCYCSGUNt3cdM+9a/j3SbfS/ENna2KCC2uFz5ZfcBzgmgC/a6pDc6BFbtJGrL1C8bq6bQtPj0rT5Gik2vN8xw2RXmc1u1tFKxuBEI/u853Gulj8ZWEWjQyLIWkCAOhHOaAM6x0/S9T1a/gdMzF3laXdhgAc8duxrZ8NW+njQby9vIIpDcM75njydvbB/CuI0bSdU8QaxctphMW4ku5bACsehrsNW0LXJ5I9KmZJYY49yeWwOcYGKAOPu7bUb7SJp95jt7c5jg2kFlz94euKz9BSK61e1imCbN3zBs4b2rS1m61TQJTpjF44yOUfByDWbYXbrqUTpGhlLDaMdT6UAfUumwxW/wYuooI1jjXTrrCKcgf6yvm/NfR+midfgrci5gEEw0263Rhs44k7/SvmovXo4L4WdFFXTJt+KY0lQNJTN+TXZc6FAn31G7UmaYxzQUojC5pN9DCmYqTRD92acBTFFSdBTBjWNR5p7GmgZpAhKctLtpBxQMlHFODVHuoDUybE2eKaWxQp4pGFBIm7mnZ4pg608dKBsYTzT1YikIzQBigB5ekD0w80AUCshzNTN3NOPSmY5oGjvfhC2fiZpQ9pv8A0U9dJ8cf+Rtsef8AlxX/ANGPXM/CD/kpuk/Sb/0S9dH8dG2+LrD/AK8F/wDRj1zv/eF6HNUX7xHl7tjvQHzVeWQetMSTnrXTc1UNC4TkZqvIeKcH4qN24oCKsRvkgUwA5qQ80mKRqhV64p9NU804nigljXOKjD80SE1HzQWloTq+fSlJ+XrUS5HrS7qBWH496Y1ODU08mgEPjXp0qcKPWo4yOKm4poiTImOD1/WgNQ4pg6UBYm6imMKVTxSk5oERqeasJIQOKr4p4OFoHJXJ2mOKgaTLdaa7VCT83Wi4Rgibf70VDziikVyo9V+Omn/b/HkG2YRyRaRGyjH3v3steK3EsqzAPxIh617j8c5pdN8a2Wpx8j+zkhZexHmSH+teOan9kmjSSEnzGJLZ7e1eGeWZtzM08u9wM4xVzQ9SbSr9LlByDg/TvWaxI4NX7WNUgEgxu75oAueILm2urpZbeQuWzkeg7VZ8GWNnqOsG3vVLIUyAGxk1iyRB90hIAHfFFjObW5jnU/MpyMUAbPi2xgsdUP2eNY4z0QH0rK0+9kjLQNKwifGVzxXQ3lrNrUMVykDOG9OorKsdGF1qRtC3lt2PXvjH1oA2tc8Lvao1zaOxh2ByG6jNcuHYggsfcZrtPE1tqGlrDZyPJIViUEkdscCuSnktyo/dssh6n0NACI7CDyyeHPFdj4HdY9Ov1lK/NKu4uMjaAa5fRNIn1bUVhicAKC24nAFXJJ7jQLie2DAl1xnqD70AWda0n7NLNPYwtJ5pLbgPu8npVPwjq6aVromvDJ5BBVwpwarDWbpXRvtDsAeR7V2fgzS9Jv8AULi7vIBdQbeIh97ce+KAON1ORNQ125mgbCO5KDHaq6ySWMjJJbh9wOFcEcHvXQ669j4f8ZRT6XB+5ibd5c3IJ9Ks694gs9X1LS79Yo45CDHLGFGAOMfzNAGv8P47C20+4v3dZ7jZt27fu+1c9q13cXmoXtszBWMoYJ64qOOeGxuLhUmMMc+OEPANWIrQNA2qJAboQuNxGefrQBnWU39ka7ZXV0rokbh2C9cVc8R+KI9d8TWl3bRkpFtjBcfe59O3Wq/irXbXV4rNLayW3mjUiTac59KxLGQJDcRlV3HaVYjkHNAHtXiTwzY6h4a3wRx2dxhSWcY4NeL3Vs9hcSQsFk8tsFl6GvV9ISfWfDSz6ldCXccbg3CY4xXH+J9OhsleNCBt5LZzuoA6n4c6baXFo08hMch/ecH5SOgBH510niW8sNOv7a4LrAsaE5iH3j6GvP8AwL4pj02OfTptvkMpk80dQemPpVDX7+XXtdnW3mdrcHai9ulAGN4m1Z9a1eS6diecKD2UdKg0+3uTi+htmkSBgWPapLjQriKT98jwL13Op5rThZdN0cxJcMS7fMUP8xQB9FaJqD6p8Cp72SPy3fS7sFfQgSL/AEr5rJ4r6K8KsG/Z8lZeh0y9P6y185HpXoYP4WdeGWjGs1IppGoUV1nWSZpM04DimN1piHHpTO9KOadtoAFFIxp2KY9AIjPNPWmgc1IBgUhsCeKZ1NK1CimAoXNLtp4xQSKBXG5xThzTO9PWgTAim5p7Hioj1oBEgNNJoWgjNAxA1O3UwrRzQFhxakHNBFAOKAO7+EP/ACU7SfpN/wCiXrd+PTbfGFh/2D1/9GPWD8IDn4naT9Jv/RL1t/Hz/kcdP/7B6/8Aox65pf7wvQwa/fL0PKJGJNNXNLjNKAAa6ToJAeKTk03NOWgQoFBFO7UEigQzpT88U3Ip4FAMiYZpm01YK0m2gEyEjApoPNSuPlqEDmgpEg5zTwvWmqKkHFBLFUAf/rqXPFRjFOyMUyGB5qMjAqQnFMY0DQwNg9aXdmm4NJ0pFWJRQTgUxWoY0CsRu1M70N1pKRokWFGRRUSPg0UyWmeqfHuS4l8cWljHtMcumRNhuzCWXmvNrrR2g06O68vdE4/1gOQD3B9K9M+OkZbx/ayL96PSoz+cstecXAu9JtJLefBtbpVcAn7pPcV4Z5RzLxq0gA5OelekWfg7TLjwjBeNNJFeOxUoT94+mK83ZSk5KE8Hg17N4A18a3o8trdBPPtMNuC8kf3qAPIL0PaSSW45Uk9R2qrGhcjnGK6Hxhai18SP5iBonG9QvGVJNZ1hdWUGtQyNGwtgwyM8j3oA1vDmstYR3FpcLmFhuVicFT/hVaC/Ya/HqEIjZUcSGNm25CnOM/hW74r0g3jw3Fgu4sM7jxuGK5aBHsxNFMrpIxA2lMg0AeieLPEMWtWVre2kG0SqY2zztYdvyxXmtxE0shLZ61vDVJbewlt9yTpOAGV0wyMOjD3xxWIPPgY5xlj/ABHNAF7QZltb3ZhnEilQA2OT0qPWYma4CvlXyc7ifXtXR2XhdDoL315MqzPGWjVexFchf373UUEeSfKJOT15oAkhTYQAPl969D8EaDqES3F08KJFLH8pdtrexFc54F0mTXNY8goHt1wZs9hXpPxGv9O0nw6unS+csjx7IvKOOnqaAPINeQjV2jk5k3ndhs96evhzU59NGow2crWobb5gHANHg/SJ9a8TW1qtu1wrMDJ1wF7kmvpODTLPSdNhsrdQsaJjyieDnuaAPnDTdOutSd4IoDJNEpYgnnAq+msGy0m40eJT5s0gy2cYrqoZdM0zxVqOqyPFBaw5VCh5c98CsHRNOt/GnjG8vGlNtp8A86RzwdooA5i7s7mzvnNxGYy/3CfoCDVa4jljgy6Eb25bH9a9G17xb4XutYsBb2T5tH2PcuARIhGDkVd8Warorarp9rDDbTwPEu9VUbSGPH6UAM8GacsvgK8lmuiEALBPauGvboXEZiJPDcZGciug1+2l0S6m0a0uGNkSHWNTyARnBrq/DngDS7/ww9ze7lumBKHJ49KAPKPI+w2DyrEW887BkZ6c8V2nww0kPevdXtoWRVwjP03Z9PpXOak0mkzmOQeYkcjKFPT6j8qsReL76ysJrXS5PK88De38S49KAO0+L9+iW1nZxg+YTuY4xgdhXmui6ZNrd9HbJIAGIBLcAfjTGkv9SZnu55ptgyXkJbFWNEaVSFibazvwenPagD6bsNIXQvgpd6YsplEGmXY3nvkSN/WvmQ4r6dtI7qH4K3qXsvm3C6Zd73z14k/pivl3fXoYP4WdmGWjFYUL1phalDV1nVYmJ4qM8mkL0gNMEiRRSk4pAeKaxoFYdupjGmE0ZpDsSKKeelMU0rGmIaeacoqPPNPDUDHE4pAc00tQrUBYlApegpu/iml80E2YpOaMUgOaUnFAxCcUoOajJpy9aB2HnpTM805jxTKBIfnimU4Dim4oGdz8Hv8AkqGk/Sb/ANEvW/8AHz/kctP/AOwev/ox6wvg+P8Ai52k/Sb/ANEvW98e/wDkcdP/AOwev/ox65n/ALwvQ53/ABl6Hku6k3UrcGmV0HTYUnmnBqZRQFiQtTdxptFAWJFJPFWFFVk61ZV8U0RIeRxSYFNMtNMnHamTZiP3qIYp7NxUQ+8aRaRIDgUF8UwE4pCDQOxIJDkU9XqEDkc0KxFArE5ekBJNRbyamjBNAmrCgZprripfurULyc9aBLcjHFKzcU0scGmkk0i0gJyaSiigoKKnjANFOxLker/HC3u2+IVjJAFKNpaIQWxnEsmf5iuD1kJd2dnFPLH50IClc9QO1dP+0NM8XxD08KxA/sqPof8AprLXkjlpeWZifc14Z5J0vjHTbOyvbe408Mtrcwq4RuqtjkVmaLqOo6TfibT9wlZSpXGdwPYirNhqttcW0NlrPnSWkAbyTEfmUn19RXpHh+70+88OW2sW9pG91Yt9nm2p8xXPDfX/AOvQB5VrF9e6lqMl1f589sDGMBRjgAelQaZFFLq1ss5xGZBmvWPHOkabrPhxdXsgouEwS443LwAMetY2ifD601LwPJrazTfbI937rGACKAOyttMkuImcwqIkTjNcfrlhbXimNoyjDOyReoP+FXPD/jy0eSCw1CGSNyBEXVsjPTJFJ41u/s+lTOvJjfyQyjBXPTI/CgDzS8MslycS+dt4HGDVd5DxuQqR1pQSV3A/MDnNJNcPcEebyVHXFAG9D4uu4dIOnbVeMjAY/eWucJxk+tT29pPeS7LeF5XxnagyabPHPbqYZ4mQ5zhlwaANTwx4nvPC+p/a7XDKw2yRt0YV2VxqN18RriKa6gWCztuNqnJc/WuG0KzimuHluR+5iGcHua9Y0u1trOyRLRAsbDd9TQBZ0WOPw3cxX1hCq+UpEiAf6xe4+ta+teMIdRtENvCVLjO4HoPSqkODHn1rnL+E2t7MltFuE+MKDkq/qB6H+lAFbVNIsNStJZY12yqMkCuFW5l0157KylZY7jCSH1Ga7I6P4o09pLloHNuwyxZeMVlaz4aWy0GHUNzy3V1ICCBhVB7D1NAHd6X8HrOa1hudQumkdlD7Y+BjGa4fQfCEuv8AjaTSLSbCwuxEx5CorYH9K9D/AOEgv7X4dW8ZdhqDx/ZkRR87N0Fed2Vr4i8Oaji2n8m9ZcEI3JHXGaAPaLX4Q6TDJJeXd1c3l43JZnwCfpW9aWJV0gWEBVG2uH+H3xDubyZ9O1WXMwyVZzg5HUV6daalDInnkIIf+euRjP1oA4Dxh8HLTXA9zY3ckF0cttflCf6V4XcaVdeFvE0un6nEBPAwIzyp9D9DX17PPgK+75SRXzp8d0tx4qsriKVDcSWw81FPK4Jxn8KAM/VPE5j0wpFFax74isipGPmJ71xNtqE0DRSR4HlHIHqaptLJIuGYkAUqOWwiqSTwMUAfWWj6hJqvwHnvZVCySaVd5A9hIP6V8xV9J+FYJLb9nh4ZfvrpV5n/AMimvmyu/B/CztwuzCiiiuw6wooooAkU05hUanFOLcUEjCMUlKTmkoKFBpSc0gGadtoEMopSMUlAwozRQKAHZNJTwtIRigQ5aVjUYNOpisMJ5pQ2KQikpDHlqQHmm0UBYmDcU0mmZpKAsd78Hmz8UNJHtN/6Jetz4/HHjPT/APsHr/6MkrA+Dv8AyVHSPpP/AOiXre+P/wDyOenf9g9f/Rklc0v469DB/wAZeh5PRRRXSdAUUU9RxQA0j2pKkxxUZ60CQoOKXeabRQOw8HPenbeOtRVPHgjv0oJeg0qcUzBBqcjio3wKYkxM8Um4HFNJpKRViTOSKQdaRTzTximIEHNWUUCoVxxUiOp70ESuxZQdvFVChFWJZRyARVcux70MqF7DcUU4KTk5pCMGkWJRRRQA+NsHFFMoouS43PrrxH8PPCvi3UY7/XNL+1XUcQhV/tEseEBLAYRgOrH86yR8F/h+vTQP/Jyf/wCLrvaK8Q8k4MfBnwAOmgD/AMDJ/wD4utjRvAPhjw/HNHpmliBJseYDNI+7H+8xrpKKAOZf4f8Ahd4WhOmYib7yLcSqp/ANVy08JaHY2UlnbWAjt5PvoJHOfzNbVFAHDn4P+AzN539hfvA27P2ufr/33WrqfgPwzrFu8F/pSSxyBQ+JHUtt6ZKsDxXR0UAcEPgv8Px00D/ycn/+LpP+FK/D4nP/AAj/AD/1+XH/AMcrvqKAOW0n4c+EtDmabTdHSCRl2FhNI3H4saj1H4ZeD9WkMl9o4mcnOTcSjn8GrraKAOIf4Q+BZCpbQySvT/TJ/wD4utRPAnhqNAq6bhR0Hnyf/FV0dFAGAvgrw+q7Rp+B/wBd5P8A4qkh8EeHYLoXMenDzl6M00jY/Nq6CigDPl0TT5oPJkt90eMbd7f41l3fgHwxf2UFnc6WJILdi0SedINpPuGzXSUUAc3beAfDNpLFLFpx3xf6svcSvt+m5jVq58I6BeSxyz6ZE0kZyr5IIP1BraooA5SH4a+Ebe/a+i0dVuGJJfz5Tz9C2K1rzw3pN/p4sLi1JtgQwRJXTke6kGtWigDnH8DaBJMkz2920iY2k6hcHGP+B1lXfwf8C31w9xdaI8sznLO97cEn/wAiV3FFAHA/8KV+HwGP+Ef4/wCv24/+OUsfwY+H8Thk0DDDkH7ZP/8AF13tFAGdFoenQaE2iR2+NOaJ4TDvY5Rs7huznnJ5zmuY/wCFP+BP+gF/5Nz/APxddxRVKco7MpSktmcP/wAKf8Cf9AL/AMm5/wD4uj/hT/gT/oBf+Tc//wAXXcUU/az7sftJ92cP/wAKf8Cf9AL/AMm5/wD4uj/hT/gT/oBf+Tc//wAXXcUUe1n3Ye0n3Zw//Cn/AAJ/0Av/ACbn/wDi6P8AhT/gT/oBf+Tc/wD8XXcUUe1n3Ye0n3Zw/wDwp/wJ/wBAL/ybn/8Ai6P+FP8AgT/oBf8Ak3P/APF13FFHtZ92HtJ92cP/AMKg8CD/AJgX/k3P/wDF0v8AwqLwL/0A/wDybn/+Lrt6KPaz/mYe0n3OHPwg8CH/AJgX/k3P/wDF0f8ACn/An/QC/wDJuf8A+LruKKPaz7sPaT7s4f8A4U/4E/6AX/k3P/8AF0f8Kf8AAn/QC/8AJuf/AOLruKKPaz7sPaT7s4j/AIVF4F/6Af8A5Nz/APxdB+EPgU/8wP8A8m5//i67eij2s/5mHtJ9zh/+FP8AgT/oBf8Ak3P/APF0v/CofAv/AEA//Juf/wCLrt6KPaz/AJmHtJ92cR/wqDwIf+YF/wCTc/8A8XSf8Kf8Cf8AQC/8m5//AIuu4oo9rPuw9pPuzh/+FP8AgT/oBf8Ak3P/APF0f8Kf8Cf9AL/ybn/+LruKKPaz7sPaT7s4f/hT/gT/AKAX/k3P/wDF0f8ACn/An/QC/wDJuf8A+LruKKPaz7sPaT7s5XRvhx4T0DVIdT0zSvIvId2yT7RK2MgqeGYjoT2qx4g8CeG/FN7Heazpv2qeOPykfz5EwuScYVgOpNdFRS55XvfUXPK97nD/APCn/An/AEAv/Juf/wCLo/4U/wCBP+gF/wCTc/8A8XXcUU/az7sftJ92cP8A8Kf8Cf8AQC/8m5//AIugfCDwIOmhf+Tc/wD8XXcUUe1n3Ye0n3ZxH/CovAv/AEA//Juf/wCLpD8IPAh/5gX/AJNz/wDxddxRR7Wf8zD2k+7OH/4U/wCBP+gF/wCTc/8A8XR/wp/wJ/0Av/Juf/4uu4oo9rPuw9pPuzh/+FP+BP8AoBf+Tc//AMXSj4Q+BR00P/ybn/8Ai67eij2s/wCZh7SfdnE/8Kj8Df8AQD/8m5//AIukPwg8Cnrof/k3P/8AF129FHtZ/wAzD2k+5w//AAp/wJ/0Av8Aybn/APi6P+FP+BP+gF/5Nz//ABddxRR7Wfdh7SfdnD/8Kf8AAn/QC/8AJuf/AOLpR8IfAo6aH/5Nz/8AxddvRR7Wf8zD2k+7OJ/4VF4G/wCgH/5Nz/8AxdJ/wqHwL/0A/wDybn/+Lrt6KftZ/wAzD2k+5w//AAqDwJ/0A/8Aybn/APi6P+FQeBP+gF/5Nz//ABddxRS9rP8AmYe0n3ZxA+EPgUdND/8AJuf/AOLpP+FP+BD/AMwL/wAm5/8A4uu4oo9rPuw9pPuzh/8AhT/gT/oBf+Tc/wD8XR/wp/wJ/wBAL/ybn/8Ai67iij2s+7D2k+7OH/4U/wCBP+gF/wCTc/8A8XRXcUUe1n3Ye0n3Z//Z"
}
},
{
"id": "/page/2/Caption/1",
"block_type": "Caption",
"html": "<p>Figure 2. UCF sample results. Left: input counting image. Middle: Ground truth density map. Right: AMDCN prediction of density map on test image. The network never saw these images during training. All density maps are one channel only (i.e. grayscale), but are colored here for clarity.</p>",
"polygon": [
[
49.60546875,
163.388671875
],
[
286.3586730957031,
163.388671875
],
[
286.3586730957031,
216.38336181640625
],