|
| 1 | +pragma solidity >=0.5.0; |
| 2 | + |
| 3 | +import '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol'; |
| 4 | +import '@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol'; |
| 5 | +import '@uniswap/lib/contracts/libraries/Babylonian.sol'; |
| 6 | +import '@uniswap/lib/contracts/libraries/FullMath.sol'; |
| 7 | + |
| 8 | +import './SafeMath.sol'; |
| 9 | +import './UniswapV2Library.sol'; |
| 10 | + |
| 11 | +// library containing some math for dealing with the liquidity shares of a pair, e.g. computing their exact value |
| 12 | +// in terms of the underlying tokens |
| 13 | +library UniswapV2LiquidityMathLibrary { |
| 14 | + using SafeMath for uint256; |
| 15 | + |
| 16 | + // computes the direction and magnitude of the profit-maximizing trade |
| 17 | + function computeProfitMaximizingTrade( |
| 18 | + uint256 truePriceTokenA, |
| 19 | + uint256 truePriceTokenB, |
| 20 | + uint256 reserveA, |
| 21 | + uint256 reserveB |
| 22 | + ) pure internal returns (bool aToB, uint256 amountIn) { |
| 23 | + aToB = FullMath.mulDiv(reserveA, truePriceTokenB, reserveB) < truePriceTokenA; |
| 24 | + |
| 25 | + uint256 invariant = reserveA.mul(reserveB); |
| 26 | + |
| 27 | + uint256 leftSide = Babylonian.sqrt( |
| 28 | + FullMath.mulDiv( |
| 29 | + invariant.mul(1000), |
| 30 | + aToB ? truePriceTokenA : truePriceTokenB, |
| 31 | + (aToB ? truePriceTokenB : truePriceTokenA).mul(997) |
| 32 | + ) |
| 33 | + ); |
| 34 | + uint256 rightSide = (aToB ? reserveA.mul(1000) : reserveB.mul(1000)) / 997; |
| 35 | + |
| 36 | + if (leftSide < rightSide) return (false, 0); |
| 37 | + |
| 38 | + // compute the amount that must be sent to move the price to the profit-maximizing price |
| 39 | + amountIn = leftSide.sub(rightSide); |
| 40 | + } |
| 41 | + |
| 42 | + // gets the reserves after an arbitrage moves the price to the profit-maximizing ratio given an externally observed true price |
| 43 | + function getReservesAfterArbitrage( |
| 44 | + address factory, |
| 45 | + address tokenA, |
| 46 | + address tokenB, |
| 47 | + uint256 truePriceTokenA, |
| 48 | + uint256 truePriceTokenB |
| 49 | + ) view internal returns (uint256 reserveA, uint256 reserveB) { |
| 50 | + // first get reserves before the swap |
| 51 | + (reserveA, reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB); |
| 52 | + |
| 53 | + require(reserveA > 0 && reserveB > 0, 'UniswapV2ArbitrageLibrary: ZERO_PAIR_RESERVES'); |
| 54 | + |
| 55 | + // then compute how much to swap to arb to the true price |
| 56 | + (bool aToB, uint256 amountIn) = computeProfitMaximizingTrade(truePriceTokenA, truePriceTokenB, reserveA, reserveB); |
| 57 | + |
| 58 | + if (amountIn == 0) { |
| 59 | + return (reserveA, reserveB); |
| 60 | + } |
| 61 | + |
| 62 | + // now affect the trade to the reserves |
| 63 | + if (aToB) { |
| 64 | + uint amountOut = UniswapV2Library.getAmountOut(amountIn, reserveA, reserveB); |
| 65 | + reserveA += amountIn; |
| 66 | + reserveB -= amountOut; |
| 67 | + } else { |
| 68 | + uint amountOut = UniswapV2Library.getAmountOut(amountIn, reserveB, reserveA); |
| 69 | + reserveB += amountIn; |
| 70 | + reserveA -= amountOut; |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + // computes liquidity value given all the parameters of the pair |
| 75 | + function computeLiquidityValue( |
| 76 | + uint256 reservesA, |
| 77 | + uint256 reservesB, |
| 78 | + uint256 totalSupply, |
| 79 | + uint256 liquidityAmount, |
| 80 | + bool feeOn, |
| 81 | + uint kLast |
| 82 | + ) internal pure returns (uint256 tokenAAmount, uint256 tokenBAmount) { |
| 83 | + if (feeOn && kLast > 0) { |
| 84 | + uint rootK = Babylonian.sqrt(reservesA.mul(reservesB)); |
| 85 | + uint rootKLast = Babylonian.sqrt(kLast); |
| 86 | + if (rootK > rootKLast) { |
| 87 | + uint numerator1 = totalSupply; |
| 88 | + uint numerator2 = rootK.sub(rootKLast); |
| 89 | + uint denominator = rootK.mul(5).add(rootKLast); |
| 90 | + uint feeLiquidity = FullMath.mulDiv(numerator1, numerator2, denominator); |
| 91 | + totalSupply = totalSupply.add(feeLiquidity); |
| 92 | + } |
| 93 | + } |
| 94 | + return (reservesA.mul(liquidityAmount) / totalSupply, reservesB.mul(liquidityAmount) / totalSupply); |
| 95 | + } |
| 96 | + |
| 97 | + // get all current parameters from the pair and compute value of a liquidity amount |
| 98 | + // **note this is subject to manipulation, e.g. sandwich attacks**. prefer passing a manipulation resistant price to |
| 99 | + // #getLiquidityValueAfterArbitrageToPrice |
| 100 | + function getLiquidityValue( |
| 101 | + address factory, |
| 102 | + address tokenA, |
| 103 | + address tokenB, |
| 104 | + uint256 liquidityAmount |
| 105 | + ) internal view returns (uint256 tokenAAmount, uint256 tokenBAmount) { |
| 106 | + (uint256 reservesA, uint256 reservesB) = UniswapV2Library.getReserves(factory, tokenA, tokenB); |
| 107 | + IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, tokenA, tokenB)); |
| 108 | + bool feeOn = IUniswapV2Factory(factory).feeTo() != address(0); |
| 109 | + uint kLast = feeOn ? pair.kLast() : 0; |
| 110 | + uint totalSupply = pair.totalSupply(); |
| 111 | + return computeLiquidityValue(reservesA, reservesB, totalSupply, liquidityAmount, feeOn, kLast); |
| 112 | + } |
| 113 | + |
| 114 | + // given two tokens, tokenA and tokenB, and their "true price", i.e. the observed ratio of value of token A to token B, |
| 115 | + // and a liquidity amount, returns the value of the liquidity in terms of tokenA and tokenB |
| 116 | + function getLiquidityValueAfterArbitrageToPrice( |
| 117 | + address factory, |
| 118 | + address tokenA, |
| 119 | + address tokenB, |
| 120 | + uint256 truePriceTokenA, |
| 121 | + uint256 truePriceTokenB, |
| 122 | + uint256 liquidityAmount |
| 123 | + ) internal view returns ( |
| 124 | + uint256 tokenAAmount, |
| 125 | + uint256 tokenBAmount |
| 126 | + ) { |
| 127 | + bool feeOn = IUniswapV2Factory(factory).feeTo() != address(0); |
| 128 | + IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, tokenA, tokenB)); |
| 129 | + uint kLast = feeOn ? pair.kLast() : 0; |
| 130 | + uint totalSupply = pair.totalSupply(); |
| 131 | + |
| 132 | + // this also checks that totalSupply > 0 |
| 133 | + require(totalSupply >= liquidityAmount && liquidityAmount > 0, 'ComputeLiquidityValue: LIQUIDITY_AMOUNT'); |
| 134 | + |
| 135 | + (uint reservesA, uint reservesB) = getReservesAfterArbitrage(factory, tokenA, tokenB, truePriceTokenA, truePriceTokenB); |
| 136 | + |
| 137 | + return computeLiquidityValue(reservesA, reservesB, totalSupply, liquidityAmount, feeOn, kLast); |
| 138 | + } |
| 139 | +} |
0 commit comments