@@ -59,7 +59,7 @@ function LogDensityProblems.dimension(model::MultiModel)
59
59
end
60
60
61
61
@testset " multivariate samplers" begin
62
- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
62
+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
63
63
@testset for sampler in [
64
64
# Vector-valued windows
65
65
RandPermGibbs (Slice .(fill (1 , LogDensityProblems. dimension (model)))),
74
74
HitAndRun (SliceSteppingOut (1 )),
75
75
HitAndRun (SliceDoublingOut (1 )),
76
76
77
- # Latent slice sampling
77
+ # Multivariate slice samplers
78
78
LatentSlice (5 ),
79
-
80
- # Gibbsian polar slice sampling
81
79
GibbsPolarSlice (100 ),
82
80
]
83
81
@testset " initial_params" begin
84
- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
82
+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
85
83
θ, y = MCMCTesting. sample_joint (Random. default_rng (), model)
86
84
model′ = AbstractMCMC. LogDensityModel (@set model. y = y)
87
85
92
90
93
91
@testset " initial_sample" begin
94
92
rng = StableRNG (1 )
95
- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
93
+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
96
94
θ0 = SliceSampling. initial_sample (rng, model)
97
95
98
96
rng = StableRNG (1 )
101
99
end
102
100
103
101
@testset " determinism" begin
104
- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
102
+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
105
103
θ, y = MCMCTesting. sample_joint (Random. default_rng (), model)
106
104
model′ = AbstractMCMC. LogDensityModel (@set model. y = y)
107
105
140
138
n_mcmc_thin = 10
141
139
test = ExactRankTest (n_samples, n_mcmc_steps, n_mcmc_thin)
142
140
143
- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
141
+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
144
142
subject = TestSubject (model, sampler)
145
143
@test seqmcmctest (test, subject, 0.001 , n_pvalue_samples; show_progress= false )
146
144
end
0 commit comments