-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multi.py
398 lines (343 loc) · 13.2 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import sys
import time
import argparse
from multiprocessing import Pool, Queue
import cPickle as pickle
import numpy as np
import tables as tb
from skimage.transform import resize
from skimage.color import rgb2grey
import theano.tensor as T
import theano
from nn import *
from networks import *
from dataset_augmentation import *
# ----------------------------------------------------------------------------
# ARGUMENT PARSER
Parser = argparse.ArgumentParser(description='GPU Experiment')
Parser.add_argument('--db_path', default='/home/cesar/DB/dogs_vs_cats')
Parser.add_argument('--xp_path', default='TEST')
Parser.add_argument('--seed', type=int, default=77)
Parser.add_argument('--width', type=int, default=124)
Parser.add_argument('--height', type=int, default=124)
Parser.add_argument('--batch_size', type=int, default=100)
Parser.add_argument('--nepochs', type=int, default=1000)
Parser.add_argument('--data_augmentation', action='store_true', default=False)
Parser.add_argument('--rotate', action='store_true', default=False)
Parser.add_argument('--crop', action='store_true', default=False)
Parser.add_argument('--noise', action='store_true', default=False)
Parser.add_argument('--flip', action='store_true', default=False)
Parser.add_argument('--equalize', action='store_true', default=False)
Parser.add_argument('--grey', action='store_true', default=False)
Parser.add_argument('--lr', type=float, default=0.01) # 0.001
Parser.add_argument('--lr_decay', type=float, default=0.0) #0.00001
Parser.add_argument('--momentum_factor', type=float, default=0.0) #0.9
Parser.add_argument('--NAG', action='store_true', default=False)
Parser.add_argument('--L1_factor', type=float, default=0.0) #0.0001
Parser.add_argument('--L2_factor', type=float, default=0.0) #0.0001
Parser.add_argument('--stop_after', type=int, default=50)
# TODO: Finish dropout
Parser.add_argument('--dropout', action='store_true', default=False)
Parser.add_argument('--drop_prob', type=float, default=0.5)
Parser.add_argument('--drop_prob0', type=float, default=0.8)
Parser.add_argument('--arch', type=int, default=None)
Parser.add_argument('--kw0', type=int, default=9)
Parser.add_argument('--pool0', type=int, default=2)
Parser.add_argument('--nhu0', type=int, default=32)
Parser.add_argument('--kw1', type=int, default=9)
Parser.add_argument('--pool1', type=int, default=2)
Parser.add_argument('--nhu1', type=int, default=64)
Parser.add_argument('--kw2', type=int, default=6)
Parser.add_argument('--pool2', type=int, default=2)
Parser.add_argument('--nhu2', type=int, default=20) # 20
Parser.add_argument('--kw3', type=int, default=6)
Parser.add_argument('--pool3', type=int, default=2)
Parser.add_argument('--nhu3', type=int, default=20) # 20
Parser.add_argument('--kw4', type=int, default=6)
Parser.add_argument('--pool4', type=int, default=2)
Parser.add_argument('--nhu4', type=int, default=20) # 20
Parser.add_argument('--nhu5', type=int, default=20) # 20
Parser.add_argument('--nhu6', type=int, default=1000)
params = Parser.parse_args()
# -----------------------------------------------------------------------------
# PARAMETERS
# Theano params
theano.config.floatX = 'float32'
floatX = theano.config.floatX
# Init random number generator
np.random.seed(params.seed)
# DB parameters
params.TR_IDX = [0, 20000]
params.VA_IDX = [20000, 22500]
params.TE_IDX = [22500, 25000]
params.db = os.path.join(params.db_path, 'train.h5')
# Training parameters
if params.grey:
params.batch_shape = (params.batch_size, 1, params.height, params.width)
else:
params.batch_shape = (params.batch_size, 3, params.height, params.width)
# TODO experiment dir
if not os.path.exists(params.xp_path):
os.makedirs(params.xp_path)
params.result_file = os.path.join(params.xp_path, 'results.txt')
params.final_result_file = os.path.join(params.xp_path, 'final_results.txt')
params.net_file = os.path.join(params.xp_path, 'net.bin')
params.best_net_file = os.path.join(params.xp_path, 'best_net.bin')
# Early stopping params
params.best_result = 1.
params.stop_counter = 0
# ----------------------------------------------------------------------------
# FUNCTIONS
def one_hot_encode(x, nclasses):
y = np.zeros(nclasses)
y[x] = 1
return y
def load_dataset(params, s):
if s == 'train':
idx = params.TR_IDX
elif s == 'valid':
idx = params.VA_IDX
elif s == 'test':
idx = params.TE_IDX
else:
sys.exit('Unknown s parameter in load_dataset()!')
with tb.open_file(params.db, 'r') as f:
# Load labels into one hot encode vectors
labels = []
for x in f.root.Data.y.iterrows(idx[0], idx[1]):
labels.append(one_hot_encode(x, 2))
# Load the shapes of the images
shapes = [x for x in f.root.Data.s.iterrows(idx[0], idx[1])]
# Load the images
out_file = '%s_data_%d.bin' %(s, 1.3*params.height)
out_file = os.path.join(params.db_path, out_file)
if not os.path.exists(out_file):
images = np.zeros((idx[1]-idx[0],1.3*params.height, 1.3*params.height, 3),
dtype=np.uint8)
for i, x in enumerate(f.root.Data.X.iterrows(idx[0], idx[1])):
x = x.reshape(shapes[i])
x = resize(x, (int(1.3*params.height), int(1.3*params.height), 3))
x = (x*256).astype(np.uint8)
images[i] = x
with open(out_file, 'wb') as ff:
images.tofile(ff)
else:
with open(out_file, 'rb') as ff:
images = np.fromfile(ff, dtype=np.uint8)
shape = (idx[1]-idx[0], 1.3*params.height, 1.3*params.height, 3)
images = images.reshape(shape)
# Prepare RGB PCA (for contrast data augmentation)
if s == 'train':
l, v, m = RGB_PCA(images)
params.RGB_eig_val = l
params.RGB_eig_vec = v
params.RGB_mean = m
return images, labels
def random_crop(image):
x = np.random.randint(221, 256)
image = resize(image, (x, x, 3))
if x != 221:
x, y = np.random.randint(0, 256-x)
image = image[x:221+x, y:221+y, :]
image = image.astype(floatX)
image = np.rollaxis(image, 2, 0)
return image
def data_augmentation(image, params):
# 1. Resize and crop
if params.crop:
# Randomly zoom
x = np.random.randint(params.height, params.height*1.2) - params.height
image = resize(image, (params.height + x, params.width + x, 3))
# Ranodmly crop
if x != 0:
x, y = np.random.randint(0, x, 2)
image = image[x:params.height+x, y:params.width+y, :]
else:
image = resize(image, (params.height, params.width, 3))
# Flip
if params.flip and np.random.rand(1)[0] > 0.5:
image = flip(image)
# Normalize
image = image.astype(floatX)
# Equalize
if params.equalize:
image = RGB_variations(image, params.RGB_eig_val, params.RGB_eig_vec)
# To greyscale
if params.grey:
image = rgb2grey(image)
# Add noise
if params.noise:
image = noise(image)
# Rotate
if params.rotate:
image = rot(image)
else:
image = rot(image, 0)
# Remove mean
image = image - params.RGB_mean # TODO
# Reshape for theano's convolutoins
if params.grey:
image = image.reshape(params.height, params.width, 1)
image = np.rollaxis(image, 2, 0)
return image
def pool_init(queue):
prepare_batch.queue = queue
def prepare_batch(images, labels, params, action):
# Allocate new batch
x = np.zeros(params.batch_shape, dtype=floatX)
t = np.zeros((params.batch_size, 2), dtype=floatX)
# If training, fill batch with images that have been modified
if action == 'train' and params.data_augmentation:
for b, img in enumerate(images):
x[b] = data_augmentation(img, params)
t[b] = labels[b]
# If valid or test, fill batch with resized and normalized images
else:
for b, img in enumerate(images):
image = resize(img, (params.height, params.width, 3))
image = image.astype(floatX)
if params.grey:
image = rgb2grey(image)
image = image.reshape(params.height, params.width, 1)
image = image - params.RGB_mean # TODO
x[b] = np.rollaxis(image, 2, 0)
t[b] = labels[b]
prepare_batch.queue.put((x, t))
def one_epoch(images, labels, net, pool, queue, params, action):
# Multithreaded batches preparation
idx = np.random.permutation(len(images))
nbatches = len(idx)/params.batch_size
workers = []
for i in xrange(nbatches):
indices = idx[i*params.batch_size:(1+i)*params.batch_size]
imgs = [images[j].copy() for j in indices]
labs = [labels[j] for j in indices]
worker = pool.apply_async(prepare_batch,
args=(imgs, labs, params, action))
workers.append(worker)
# Network training
err = 0.
miss = 0.
counter = 0
while True:
x, t = queue.get()
if params.dropout:
drop(net, action, p=params.drop_prob, p0=params.drop_prob0)
if action == 'train':
L, M = net.train(x, t, params.lr)
elif action == 'valid':
L, M = net.predict(x, t)
err += L
miss += M
counter += 1
if counter == nbatches:
break
err /= nbatches
miss /= nbatches
counter = 0
for worker in workers:
if worker.ready():
counter += 1
assert counter == nbatches
assert queue.empty()
return err, miss
def save_model(network, epoch, params, t_err, t_miss, v_err, v_miss):
with open(params.net_file, 'wb') as f:
pickle.dump(params, f, protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(network, f, protocol=pickle.HIGHEST_PROTOCOL)
if v_miss < params.best_result:
params.best_result = v_miss
params.best_epoch = epoch
params.stop_counter = 0
params.best_train = t_err
params.best_train_miss = t_miss
params.best_valid = v_err
params.best_valid_miss = v_miss
with open(params.best_net_file, 'wb') as f:
pickle.dump(params, f, protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(network, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
params.stop_counter += 1
# ----------------------------------------------------------------------------
# MAIN LOOP
# Preparing network
print('Preparing Network')
network = create_network(params)
print('Done!')
# Prepare Pool and Queue
queue = Queue(20)
pool = Pool(3, pool_init, [queue])
# Loading dataset
print('Loading Data')
train_images, train_labels = load_dataset(params, 'train')
valid_images, valid_labels = load_dataset(params, 'valid')
print('Done!')
# Training loop
print('Training Loop')
for epoch in range(params.nepochs):
# Performing train and valid epoch
t = time.time()
t_err, t_miss = one_epoch(train_images, train_labels, network,
pool, queue, params, 'train')
v_err, v_miss = one_epoch(valid_images, valid_labels, network,
pool, queue, params, 'valid')
# DEBUG TODO
#print network.layers[7].get_bias().get_value()
# Saving model
save_model(network, epoch, params, t_err, t_miss, v_err, v_miss)
# Printing results to console
print('elapsed : ' + str(time.time() - t))
t_acc = 100*(1 - t_miss)
v_acc = 100*(1 - v_miss)
s = '%d\t%.5f\t%.1f\t%.5f\t%.1f' %(epoch, t_err, t_acc, v_err, v_acc)
print(s)
# Saving results
with open(params.result_file, 'a') as f:
f.write(s + '\n')
# Checking early stopping
if params.stop_counter >= params.stop_after:
print(' Early Stopping after ' + str(epoch) + ' epochs')
break
# Learning rate decay
params.lr = lr_decay(params.lr, params.lr_decay, epoch)
# Testing with best network
del train_images
del train_labels
del valid_images
del valid_labels
del network
print('Loading Test Data')
test_images, test_labels = load_dataset(params, 'test')
print('Loading Best Network')
with open(params.best_net_file, 'rb') as f:
params = pickle.load(f)
network = pickle.load(f)
# TODO: replace this ugly hack
network.train, network.predict = network._compile_net(network.layers,
network.criterion,
params)
print('Testing Loop')
test_err, test_miss = one_epoch(test_images, test_labels, network,
pool, queue, params, 'valid')
# Printing final results
print('')
print('*' * 79)
print('Final results :')
se = 'Number of epochs for best valid performances : %d' %params.best_epoch
st = 'Train error (miss) : %.5f (%.5f)' %(params.best_train,
params.best_train_miss)
sv = 'Valid error (miss) : %.5f (%.5f)' %(params.best_valid,
params.best_valid_miss)
ste = 'Test error (miss) : %.5f (%.5f)' %(test_err,
test_miss)
print(se)
print(st)
print(sv)
print(ste)
print('*' * 79)
with open(params.final_result_file, 'w') as f:
f.write(se + '\n')
f.write(st + '\n')
f.write(sv + '\n')
f.write(ste + '\n')