-
-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy pathadam.rs
288 lines (253 loc) · 9.67 KB
/
adam.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! # Adam (Adaptive Moment Estimation) optimizer
//!
//! The `Adam (Adaptive Moment Estimation)` optimizer is an adaptive learning rate algorithm used
//! in gradient descent and machine learning, such as for training neural networks to solve deep
//! learning problems. Boasting memory-efficient fast convergence rates, it sets and iteratively
//! updates learning rates individually for each model parameter based on the gradient history.
//!
//! ## Algorithm:
//!
//! Given:
//! - α is the learning rate
//! - (β_1, β_2) are the exponential decay rates for moment estimates
//! - ϵ is any small value to prevent division by zero
//! - g_t are the gradients at time step t
//! - m_t are the biased first moment estimates of the gradient at time step t
//! - v_t are the biased second raw moment estimates of the gradient at time step t
//! - θ_t are the model parameters at time step t
//! - t is the time step
//!
//! Required:
//! θ_0
//!
//! Initialize:
//! m_0 <- 0
//! v_0 <- 0
//! t <- 0
//!
//! while θ_t not converged do
//! m_t = β_1 * m_{t−1} + (1 − β_1) * g_t
//! v_t = β_2 * v_{t−1} + (1 − β_2) * g_t^2
//! m_hat_t = m_t / 1 - β_1^t
//! v_hat_t = v_t / 1 - β_2^t
//! θ_t = θ_{t-1} − α * m_hat_t / (sqrt(v_hat_t) + ϵ)
//!
//! ## Resources:
//! - Adam: A Method for Stochastic Optimization (by Diederik P. Kingma and Jimmy Ba):
//! - [https://arxiv.org/abs/1412.6980]
//! - PyTorch Adam optimizer:
//! - [https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam]
//!
pub struct Adam {
learning_rate: f64, // alpha: initial step size for iterative optimization
betas: (f64, f64), // betas: exponential decay rates for moment estimates
epsilon: f64, // epsilon: prevent division by zero
m: Vec<f64>, // m: biased first moment estimate of the gradient vector
v: Vec<f64>, // v: biased second raw moment estimate of the gradient vector
t: usize, // t: time step
}
impl Adam {
pub fn new(
learning_rate: Option<f64>,
betas: Option<(f64, f64)>,
epsilon: Option<f64>,
params_len: usize,
) -> Self {
Adam {
learning_rate: learning_rate.unwrap_or(1e-3), // typical good default lr
betas: betas.unwrap_or((0.9, 0.999)), // typical good default decay rates
epsilon: epsilon.unwrap_or(1e-8), // typical good default epsilon
m: vec![0.0; params_len], // first moment vector elements all initialized to zero
v: vec![0.0; params_len], // second moment vector elements all initialized to zero
t: 0, // time step initialized to zero
}
}
pub fn step(&mut self, gradients: &[f64]) -> Vec<f64> {
let mut model_params = vec![0.0; gradients.len()];
self.t += 1;
for i in 0..gradients.len() {
// update biased first moment estimate and second raw moment estimate
self.m[i] = self.betas.0 * self.m[i] + (1.0 - self.betas.0) * gradients[i];
self.v[i] = self.betas.1 * self.v[i] + (1.0 - self.betas.1) * gradients[i].powf(2f64);
// compute bias-corrected first moment estimate and second raw moment estimate
let m_hat = self.m[i] / (1.0 - self.betas.0.powi(self.t as i32));
let v_hat = self.v[i] / (1.0 - self.betas.1.powi(self.t as i32));
// update model parameters
model_params[i] -= self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
}
model_params // return updated model parameters
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_adam_init_default_values() {
let optimizer = Adam::new(None, None, None, 1);
assert_eq!(optimizer.learning_rate, 0.001);
assert_eq!(optimizer.betas, (0.9, 0.999));
assert_eq!(optimizer.epsilon, 1e-8);
assert_eq!(optimizer.m, vec![0.0; 1]);
assert_eq!(optimizer.v, vec![0.0; 1]);
assert_eq!(optimizer.t, 0);
}
#[test]
fn test_adam_init_custom_lr_value() {
let optimizer = Adam::new(Some(0.9), None, None, 2);
assert_eq!(optimizer.learning_rate, 0.9);
assert_eq!(optimizer.betas, (0.9, 0.999));
assert_eq!(optimizer.epsilon, 1e-8);
assert_eq!(optimizer.m, vec![0.0; 2]);
assert_eq!(optimizer.v, vec![0.0; 2]);
assert_eq!(optimizer.t, 0);
}
#[test]
fn test_adam_init_custom_betas_value() {
let optimizer = Adam::new(None, Some((0.8, 0.899)), None, 3);
assert_eq!(optimizer.learning_rate, 0.001);
assert_eq!(optimizer.betas, (0.8, 0.899));
assert_eq!(optimizer.epsilon, 1e-8);
assert_eq!(optimizer.m, vec![0.0; 3]);
assert_eq!(optimizer.v, vec![0.0; 3]);
assert_eq!(optimizer.t, 0);
}
#[test]
fn test_adam_init_custom_epsilon_value() {
let optimizer = Adam::new(None, None, Some(1e-10), 4);
assert_eq!(optimizer.learning_rate, 0.001);
assert_eq!(optimizer.betas, (0.9, 0.999));
assert_eq!(optimizer.epsilon, 1e-10);
assert_eq!(optimizer.m, vec![0.0; 4]);
assert_eq!(optimizer.v, vec![0.0; 4]);
assert_eq!(optimizer.t, 0);
}
#[test]
fn test_adam_init_all_custom_values() {
let optimizer = Adam::new(Some(1.0), Some((0.001, 0.099)), Some(1e-1), 5);
assert_eq!(optimizer.learning_rate, 1.0);
assert_eq!(optimizer.betas, (0.001, 0.099));
assert_eq!(optimizer.epsilon, 1e-1);
assert_eq!(optimizer.m, vec![0.0; 5]);
assert_eq!(optimizer.v, vec![0.0; 5]);
assert_eq!(optimizer.t, 0);
}
#[test]
fn test_adam_step_default_params() {
let gradients = vec![-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0];
let mut optimizer = Adam::new(None, None, None, 8);
let updated_params = optimizer.step(&gradients);
assert_eq!(
updated_params,
vec![
0.0009999999900000003,
-0.000999999995,
0.0009999999966666666,
-0.0009999999975,
0.000999999998,
-0.0009999999983333334,
0.0009999999985714286,
-0.00099999999875
]
);
}
#[test]
fn test_adam_step_custom_params() {
let gradients = vec![9.0, -8.0, 7.0, -6.0, 5.0, -4.0, 3.0, -2.0, 1.0];
let mut optimizer = Adam::new(Some(0.005), Some((0.5, 0.599)), Some(1e-5), 9);
let updated_params = optimizer.step(&gradients);
assert_eq!(
updated_params,
vec![
-0.004999994444450618,
0.004999993750007813,
-0.004999992857153062,
0.004999991666680556,
-0.004999990000020001,
0.004999987500031251,
-0.004999983333388888,
0.004999975000124999,
-0.0049999500004999945
]
);
}
#[test]
fn test_adam_step_empty_gradients_array() {
let gradients = vec![];
let mut optimizer = Adam::new(None, None, None, 0);
let updated_params = optimizer.step(&gradients);
assert_eq!(updated_params, vec![]);
}
#[ignore]
#[test]
fn test_adam_step_iteratively_until_convergence_with_default_params() {
const CONVERGENCE_THRESHOLD: f64 = 1e-5;
let gradients = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
let mut optimizer = Adam::new(None, None, None, 6);
let mut model_params = vec![0.0; 6];
let mut updated_params = optimizer.step(&gradients);
while (updated_params
.iter()
.zip(model_params.iter())
.map(|(x, y)| x - y)
.collect::<Vec<f64>>())
.iter()
.map(|&x| x.powi(2))
.sum::<f64>()
.sqrt()
> CONVERGENCE_THRESHOLD
{
model_params = updated_params;
updated_params = optimizer.step(&gradients);
}
assert!(updated_params < vec![CONVERGENCE_THRESHOLD; 6]);
assert_ne!(updated_params, model_params);
assert_eq!(
updated_params,
vec![
-0.0009999999899999931,
-0.0009999999949999929,
-0.0009999999966666597,
-0.0009999999974999929,
-0.0009999999979999927,
-0.0009999999983333263
]
);
}
#[ignore]
#[test]
fn test_adam_step_iteratively_until_convergence_with_custom_params() {
const CONVERGENCE_THRESHOLD: f64 = 1e-7;
let gradients = vec![7.0, -8.0, 9.0, -10.0, 11.0, -12.0, 13.0];
let mut optimizer = Adam::new(Some(0.005), Some((0.8, 0.899)), Some(1e-5), 7);
let mut model_params = vec![0.0; 7];
let mut updated_params = optimizer.step(&gradients);
while (updated_params
.iter()
.zip(model_params.iter())
.map(|(x, y)| x - y)
.collect::<Vec<f64>>())
.iter()
.map(|&x| x.powi(2))
.sum::<f64>()
.sqrt()
> CONVERGENCE_THRESHOLD
{
model_params = updated_params;
updated_params = optimizer.step(&gradients);
}
assert!(updated_params < vec![CONVERGENCE_THRESHOLD; 7]);
assert_ne!(updated_params, model_params);
assert_eq!(
updated_params,
vec![
-0.004999992857153061,
0.004999993750007814,
-0.0049999944444506185,
0.004999995000005001,
-0.004999995454549587,
0.004999995833336807,
-0.004999996153849113
]
);
}
}