-
-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy pathlinear_regression.rs
48 lines (39 loc) · 1.45 KB
/
linear_regression.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/// Returns the parameters of the line after performing simple linear regression on the input data.
pub fn linear_regression(data_points: Vec<(f64, f64)>) -> Option<(f64, f64)> {
if data_points.is_empty() {
return None;
}
let count = data_points.len() as f64;
let mean_x = data_points.iter().fold(0.0, |sum, y| sum + y.0) / count;
let mean_y = data_points.iter().fold(0.0, |sum, y| sum + y.1) / count;
let mut covariance = 0.0;
let mut std_dev_sqr_x = 0.0;
let mut std_dev_sqr_y = 0.0;
for data_point in data_points {
covariance += (data_point.0 - mean_x) * (data_point.1 - mean_y);
std_dev_sqr_x += (data_point.0 - mean_x).powi(2);
std_dev_sqr_y += (data_point.1 - mean_y).powi(2);
}
let std_dev_x = std_dev_sqr_x.sqrt();
let std_dev_y = std_dev_sqr_y.sqrt();
let std_dev_prod = std_dev_x * std_dev_y;
let pcc = covariance / std_dev_prod; //Pearson's correlation constant
let b = pcc * (std_dev_y / std_dev_x); //Slope of the line
let a = mean_y - b * mean_x; //Y-Intercept of the line
Some((a, b))
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_linear_regression() {
assert_eq!(
linear_regression(vec![(0.0, 0.0), (1.0, 1.0), (2.0, 2.0)]),
Some((2.220446049250313e-16, 0.9999999999999998))
);
}
#[test]
fn test_empty_list_linear_regression() {
assert_eq!(linear_regression(vec![]), None);
}
}