-
-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy pathkosaraju.rs
157 lines (135 loc) · 4.09 KB
/
kosaraju.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Kosaraju algorithm, a linear-time algorithm to find the strongly connected components (SCCs) of a directed graph, in Rust.
pub struct Graph {
vertices: usize,
adj_list: Vec<Vec<usize>>,
transpose_adj_list: Vec<Vec<usize>>,
}
impl Graph {
pub fn new(vertices: usize) -> Self {
Graph {
vertices,
adj_list: vec![vec![]; vertices],
transpose_adj_list: vec![vec![]; vertices],
}
}
pub fn add_edge(&mut self, u: usize, v: usize) {
self.adj_list[u].push(v);
self.transpose_adj_list[v].push(u);
}
pub fn dfs(&self, node: usize, visited: &mut Vec<bool>, stack: &mut Vec<usize>) {
visited[node] = true;
for &neighbor in &self.adj_list[node] {
if !visited[neighbor] {
self.dfs(neighbor, visited, stack);
}
}
stack.push(node);
}
pub fn dfs_scc(&self, node: usize, visited: &mut Vec<bool>, scc: &mut Vec<usize>) {
visited[node] = true;
scc.push(node);
for &neighbor in &self.transpose_adj_list[node] {
if !visited[neighbor] {
self.dfs_scc(neighbor, visited, scc);
}
}
}
}
pub fn kosaraju(graph: &Graph) -> Vec<Vec<usize>> {
let mut visited = vec![false; graph.vertices];
let mut stack = Vec::new();
for i in 0..graph.vertices {
if !visited[i] {
graph.dfs(i, &mut visited, &mut stack);
}
}
let mut sccs = Vec::new();
visited = vec![false; graph.vertices];
while let Some(node) = stack.pop() {
if !visited[node] {
let mut scc = Vec::new();
graph.dfs_scc(node, &mut visited, &mut scc);
sccs.push(scc);
}
}
sccs
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_kosaraju_single_sccs() {
let vertices = 5;
let mut graph = Graph::new(vertices);
graph.add_edge(0, 1);
graph.add_edge(1, 2);
graph.add_edge(2, 3);
graph.add_edge(2, 4);
graph.add_edge(3, 0);
graph.add_edge(4, 2);
let sccs = kosaraju(&graph);
assert_eq!(sccs.len(), 1);
assert!(sccs.contains(&vec![0, 3, 2, 1, 4]));
}
#[test]
fn test_kosaraju_multiple_sccs() {
let vertices = 8;
let mut graph = Graph::new(vertices);
graph.add_edge(1, 0);
graph.add_edge(0, 1);
graph.add_edge(1, 2);
graph.add_edge(2, 0);
graph.add_edge(2, 3);
graph.add_edge(3, 4);
graph.add_edge(4, 5);
graph.add_edge(5, 6);
graph.add_edge(6, 7);
graph.add_edge(4, 7);
graph.add_edge(6, 4);
let sccs = kosaraju(&graph);
assert_eq!(sccs.len(), 4);
assert!(sccs.contains(&vec![0, 1, 2]));
assert!(sccs.contains(&vec![3]));
assert!(sccs.contains(&vec![4, 6, 5]));
assert!(sccs.contains(&vec![7]));
}
#[test]
fn test_kosaraju_multiple_sccs1() {
let vertices = 8;
let mut graph = Graph::new(vertices);
graph.add_edge(0, 2);
graph.add_edge(1, 0);
graph.add_edge(2, 3);
graph.add_edge(3, 4);
graph.add_edge(4, 7);
graph.add_edge(5, 2);
graph.add_edge(5, 6);
graph.add_edge(6, 5);
graph.add_edge(7, 6);
let sccs = kosaraju(&graph);
assert_eq!(sccs.len(), 3);
assert!(sccs.contains(&vec![0]));
assert!(sccs.contains(&vec![1]));
assert!(sccs.contains(&vec![2, 5, 6, 7, 4, 3]));
}
#[test]
fn test_kosaraju_no_scc() {
let vertices = 4;
let mut graph = Graph::new(vertices);
graph.add_edge(0, 1);
graph.add_edge(1, 2);
graph.add_edge(2, 3);
let sccs = kosaraju(&graph);
assert_eq!(sccs.len(), 4);
for (i, _) in sccs.iter().enumerate().take(vertices) {
assert_eq!(sccs[i], vec![i]);
}
}
#[test]
fn test_kosaraju_empty_graph() {
let vertices = 0;
let graph = Graph::new(vertices);
let sccs = kosaraju(&graph);
assert_eq!(sccs.len(), 0);
}
}