forked from All-Hands-AI/OpenHands
-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
632 lines (536 loc) · 22.7 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import argparse
import logging
import os
import pathlib
import platform
import uuid
from dataclasses import dataclass, field, fields, is_dataclass
from enum import Enum
from types import UnionType
from typing import Any, ClassVar, MutableMapping, get_args, get_origin
import toml
from dotenv import load_dotenv
from opendevin.core.utils import Singleton
logger = logging.getLogger(__name__)
load_dotenv()
@dataclass
class LLMConfig(metaclass=Singleton):
"""
Configuration for the LLM model.
Attributes:
model: The model to use.
api_key: The API key to use.
base_url: The base URL for the API. This is necessary for local LLMs. It is also used for Azure embeddings.
api_version: The version of the API.
embedding_model: The embedding model to use.
embedding_base_url: The base URL for the embedding API.
embedding_deployment_name: The name of the deployment for the embedding API. This is used for Azure OpenAI.
aws_access_key_id: The AWS access key ID.
aws_secret_access_key: The AWS secret access key.
aws_region_name: The AWS region name.
num_retries: The number of retries to attempt.
retry_min_wait: The minimum time to wait between retries, in seconds. This is exponential backoff minimum. For models with very low limits, this can be set to 15-20.
retry_max_wait: The maximum time to wait between retries, in seconds. This is exponential backoff maximum.
timeout: The timeout for the API.
max_message_chars: The approximate max number of characters in the content of an event included in the prompt to the LLM. Larger observations are truncated.
temperature: The temperature for the API.
top_p: The top p for the API.
custom_llm_provider: The custom LLM provider to use. This is undocumented in opendevin, and normally not used. It is documented on the litellm side.
max_input_tokens: The maximum number of input tokens. Note that this is currently unused, and the value at runtime is actually the total tokens in OpenAI (e.g. 128,000 tokens for GPT-4).
max_output_tokens: The maximum number of output tokens. This is sent to the LLM.
input_cost_per_token: The cost per input token. This will available in logs for the user to check.
output_cost_per_token: The cost per output token. This will available in logs for the user to check.
ollama_base_url: The base URL for the OLLAMA API.
"""
model: str = 'gpt-4o'
api_key: str | None = None
base_url: str | None = None
api_version: str | None = None
embedding_model: str = 'local'
embedding_base_url: str | None = None
embedding_deployment_name: str | None = None
aws_access_key_id: str | None = None
aws_secret_access_key: str | None = None
aws_region_name: str | None = None
num_retries: int = 5
retry_min_wait: int = 3
retry_max_wait: int = 60
timeout: int | None = None
max_message_chars: int = 10_000 # maximum number of characters in an observation's content when sent to the llm
temperature: float = 0
top_p: float = 0.5
custom_llm_provider: str | None = None
max_input_tokens: int | None = None
max_output_tokens: int | None = None
input_cost_per_token: float | None = None
output_cost_per_token: float | None = None
ollama_base_url: str | None = None
def defaults_to_dict(self) -> dict:
"""
Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
"""
result = {}
for f in fields(self):
result[f.name] = get_field_info(f)
return result
def __str__(self):
attr_str = []
for f in fields(self):
attr_name = f.name
attr_value = getattr(self, f.name)
if attr_name in ['api_key', 'aws_access_key_id', 'aws_secret_access_key']:
attr_value = '******' if attr_value else None
attr_str.append(f'{attr_name}={repr(attr_value)}')
return f"LLMConfig({', '.join(attr_str)})"
def __repr__(self):
return self.__str__()
@dataclass
class AgentConfig(metaclass=Singleton):
"""
Configuration for the agent.
Attributes:
name: The name of the agent.
memory_enabled: Whether long-term memory (embeddings) is enabled.
memory_max_threads: The maximum number of threads indexing at the same time for embeddings.
"""
name: str = 'CodeActAgent'
memory_enabled: bool = False
memory_max_threads: int = 2
def defaults_to_dict(self) -> dict:
"""
Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
"""
result = {}
for f in fields(self):
result[f.name] = get_field_info(f)
return result
@dataclass
class SandboxConfig(metaclass=Singleton):
"""
Configuration for the sandbox.
Attributes:
box_type: The type of sandbox to use. Options are: ssh, exec, e2b, local.
container_image: The container image to use for the sandbox.
user_id: The user ID for the sandbox.
timeout: The timeout for the sandbox.
"""
box_type: str = 'ssh'
container_image: str = 'ghcr.io/opendevin/sandbox' + (
f':{os.getenv("OPEN_DEVIN_BUILD_VERSION")}'
if os.getenv('OPEN_DEVIN_BUILD_VERSION')
else ':main'
)
user_id: int = os.getuid() if hasattr(os, 'getuid') else 1000
timeout: int = 120
def defaults_to_dict(self) -> dict:
"""
Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
"""
dict = {}
for f in fields(self):
dict[f.name] = get_field_info(f)
return dict
def __str__(self):
attr_str = []
for f in fields(self):
attr_name = f.name
attr_value = getattr(self, f.name)
attr_str.append(f'{attr_name}={repr(attr_value)}')
return f"SandboxConfig({', '.join(attr_str)})"
def __repr__(self):
return self.__str__()
class UndefinedString(str, Enum):
UNDEFINED = 'UNDEFINED'
@dataclass
class AppConfig(metaclass=Singleton):
"""
Configuration for the app.
Attributes:
llm: The LLM configuration.
agent: The agent configuration.
sandbox: The sandbox configuration.
runtime: The runtime environment.
file_store: The file store to use.
file_store_path: The path to the file store.
workspace_base: The base path for the workspace. Defaults to ./workspace as an absolute path.
workspace_mount_path: The path to mount the workspace. This is set to the workspace base by default.
workspace_mount_path_in_sandbox: The path to mount the workspace in the sandbox. Defaults to /workspace.
workspace_mount_rewrite: The path to rewrite the workspace mount path to.
cache_dir: The path to the cache directory. Defaults to /tmp/cache.
run_as_devin: Whether to run as devin.
max_iterations: The maximum number of iterations.
max_budget_per_task: The maximum budget allowed per task, beyond which the agent will stop.
e2b_api_key: The E2B API key.
use_host_network: Whether to use the host network.
ssh_hostname: The SSH hostname.
disable_color: Whether to disable color. For terminals that don't support color.
initialize_plugins: Whether to initialize plugins.
debug: Whether to enable debugging.
enable_auto_lint: Whether to enable auto linting. This is False by default, for regular runs of the app. For evaluation, please set this to True.
enable_cli_session: Whether to enable saving and restoring the session when run from CLI.
file_uploads_max_file_size_mb: Maximum file size for uploads in megabytes. 0 means no limit.
file_uploads_restrict_file_types: Whether to restrict file types for file uploads. Defaults to False.
file_uploads_allowed_extensions: List of allowed file extensions for uploads. ['.*'] means all extensions are allowed.
"""
llm: LLMConfig = field(default_factory=LLMConfig)
agent: AgentConfig = field(default_factory=AgentConfig)
sandbox: SandboxConfig = field(default_factory=SandboxConfig)
runtime: str = 'server'
file_store: str = 'memory'
file_store_path: str = '/tmp/file_store'
workspace_base: str = os.path.join(os.getcwd(), 'workspace')
workspace_mount_path: str = (
UndefinedString.UNDEFINED # this path should always be set when config is fully loaded
)
workspace_mount_path_in_sandbox: str = '/workspace'
workspace_mount_rewrite: str | None = None
cache_dir: str = '/tmp/cache'
run_as_devin: bool = True
max_iterations: int = 100
max_budget_per_task: float | None = None
e2b_api_key: str = ''
use_host_network: bool = False
ssh_hostname: str = 'localhost'
disable_color: bool = False
initialize_plugins: bool = True
persist_sandbox: bool = False
ssh_port: int = 63710
ssh_password: str | None = None
jwt_secret: str = uuid.uuid4().hex
debug: bool = False
enable_auto_lint: bool = (
False # once enabled, OpenDevin would lint files after editing
)
enable_cli_session: bool = False
file_uploads_max_file_size_mb: int = 0
file_uploads_restrict_file_types: bool = False
file_uploads_allowed_extensions: list[str] = field(default_factory=lambda: ['.*'])
defaults_dict: ClassVar[dict] = {}
def __post_init__(self):
"""
Post-initialization hook, called when the instance is created with only default values.
"""
AppConfig.defaults_dict = self.defaults_to_dict()
def defaults_to_dict(self) -> dict:
"""
Serialize fields to a dict for the frontend, including type hints, defaults, and whether it's optional.
"""
result = {}
for f in fields(self):
field_value = getattr(self, f.name)
# dataclasses compute their defaults themselves
if is_dataclass(type(field_value)):
result[f.name] = field_value.defaults_to_dict()
else:
result[f.name] = get_field_info(f)
return result
def __str__(self):
attr_str = []
for f in fields(self):
attr_name = f.name
attr_value = getattr(self, f.name)
if attr_name in [
'e2b_api_key',
'github_token',
'jwt_secret',
'ssh_password',
]:
attr_value = '******' if attr_value else None
attr_str.append(f'{attr_name}={repr(attr_value)}')
return f"AppConfig({', '.join(attr_str)}"
def __repr__(self):
return self.__str__()
def get_field_info(f):
"""
Extract information about a dataclass field: type, optional, and default.
Args:
f: The field to extract information from.
Returns: A dict with the field's type, whether it's optional, and its default value.
"""
field_type = f.type
optional = False
# for types like str | None, find the non-None type and set optional to True
# this is useful for the frontend to know if a field is optional
# and to show the correct type in the UI
# Note: this only works for UnionTypes with None as one of the types
if get_origin(field_type) is UnionType:
types = get_args(field_type)
non_none_arg = next((t for t in types if t is not type(None)), None)
if non_none_arg is not None:
field_type = non_none_arg
optional = True
# type name in a pretty format
type_name = (
field_type.__name__ if hasattr(field_type, '__name__') else str(field_type)
)
# default is always present
default = f.default
# return a schema with the useful info for frontend
return {'type': type_name.lower(), 'optional': optional, 'default': default}
def load_from_env(cfg: AppConfig, env_or_toml_dict: dict | MutableMapping[str, str]):
"""Reads the env-style vars and sets config attributes based on env vars or a config.toml dict.
Compatibility with vars like LLM_BASE_URL, AGENT_MEMORY_ENABLED and others.
Args:
cfg: The AppConfig object to set attributes on.
env_or_toml_dict: The environment variables or a config.toml dict.
"""
def get_optional_type(union_type: UnionType) -> Any:
"""Returns the non-None type from a Union."""
types = get_args(union_type)
return next((t for t in types if t is not type(None)), None)
# helper function to set attributes based on env vars
def set_attr_from_env(sub_config: Any, prefix=''):
"""Set attributes of a config dataclass based on environment variables."""
for field_name, field_type in sub_config.__annotations__.items():
# compute the expected env var name from the prefix and field name
# e.g. LLM_BASE_URL
env_var_name = (prefix + field_name).upper()
if is_dataclass(field_type):
# nested dataclass
nested_sub_config = getattr(sub_config, field_name)
# the agent field: the env var for agent.name is just 'AGENT'
if field_name == 'agent' and 'AGENT' in env_or_toml_dict:
setattr(nested_sub_config, 'name', env_or_toml_dict[env_var_name])
set_attr_from_env(nested_sub_config, prefix=field_name + '_')
elif env_var_name in env_or_toml_dict:
# convert the env var to the correct type and set it
value = env_or_toml_dict[env_var_name]
try:
# if it's an optional type, get the non-None type
if get_origin(field_type) is UnionType:
field_type = get_optional_type(field_type)
# Attempt to cast the env var to type hinted in the dataclass
if field_type is bool:
cast_value = str(value).lower() in ['true', '1']
else:
cast_value = field_type(value)
setattr(sub_config, field_name, cast_value)
except (ValueError, TypeError):
logger.error(
f'Error setting env var {env_var_name}={value}: check that the value is of the right type'
)
if 'SANDBOX_TYPE' in env_or_toml_dict:
logger.error('SANDBOX_TYPE is deprecated. Please use SANDBOX_BOX_TYPE instead.')
env_or_toml_dict['SANDBOX_BOX_TYPE'] = env_or_toml_dict.pop('SANDBOX_TYPE')
# Start processing from the root of the config object
set_attr_from_env(cfg)
def load_from_toml(cfg: AppConfig, toml_file: str = 'config.toml'):
"""Load the config from the toml file. Supports both styles of config vars.
Args:
cfg: The AppConfig object to update attributes of.
toml_file: The path to the toml file. Defaults to 'config.toml'.
"""
# try to read the config.toml file into the config object
try:
with open(toml_file, 'r', encoding='utf-8') as toml_contents:
toml_config = toml.load(toml_contents)
except FileNotFoundError as e:
logger.info(f'Config file not found: {e}')
return
except toml.TomlDecodeError as e:
logger.warning(
f'Cannot parse config from toml, toml values have not been applied.\nError: {e}',
exc_info=False,
)
return
# if there was an exception or core is not in the toml, try to use the old-style toml
if 'core' not in toml_config:
# re-use the env loader to set the config from env-style vars
load_from_env(cfg, toml_config)
return
core_config = toml_config['core']
try:
# set llm config from the toml file
llm_config = cfg.llm
if 'llm' in toml_config:
llm_config = LLMConfig(**toml_config['llm'])
# set agent config from the toml file
agent_config = cfg.agent
if 'agent' in toml_config:
agent_config = AgentConfig(**toml_config['agent'])
# set sandbox config from the toml file
sandbox_config = config.sandbox
if 'sandbox' in toml_config:
sandbox_config = SandboxConfig(**toml_config['sandbox'])
# migrate old configs
for key in core_config:
if key.startswith('sandbox_'):
new_key = key.replace('sandbox_', '')
if new_key == 'type':
new_key = 'box_type'
if new_key in sandbox_config.__annotations__:
setattr(sandbox_config, new_key, core_config[key])
else:
logger.error(f'Unknown sandbox config: {key}')
# update the config object with the new values
AppConfig(
llm=llm_config,
agent=agent_config,
sandbox=sandbox_config,
**core_config,
)
except (TypeError, KeyError) as e:
logger.warning(
f'Cannot parse config from toml, toml values have not been applied.\nError: {e}',
exc_info=False,
)
def finalize_config(cfg: AppConfig):
"""
More tweaks to the config after it's been loaded.
"""
# Set workspace_mount_path if not set by the user
if cfg.workspace_mount_path is UndefinedString.UNDEFINED:
cfg.workspace_mount_path = os.path.abspath(cfg.workspace_base)
cfg.workspace_base = os.path.abspath(cfg.workspace_base)
# In local there is no sandbox, the workspace will have the same pwd as the host
if cfg.sandbox.box_type == 'local':
cfg.workspace_mount_path_in_sandbox = cfg.workspace_mount_path
if cfg.workspace_mount_rewrite: # and not config.workspace_mount_path:
# TODO why do we need to check if workspace_mount_path is None?
base = cfg.workspace_base or os.getcwd()
parts = cfg.workspace_mount_rewrite.split(':')
cfg.workspace_mount_path = base.replace(parts[0], parts[1])
if cfg.llm.embedding_base_url is None:
cfg.llm.embedding_base_url = cfg.llm.base_url
if cfg.use_host_network and platform.system() == 'Darwin':
logger.warning(
'Please upgrade to Docker Desktop 4.29.0 or later to use host network mode on macOS. '
'See https://github.com/docker/roadmap/issues/238#issuecomment-2044688144 for more information.'
)
# make sure cache dir exists
if cfg.cache_dir:
pathlib.Path(cfg.cache_dir).mkdir(parents=True, exist_ok=True)
config = AppConfig()
load_from_toml(config)
load_from_env(config, os.environ)
finalize_config(config)
# Utility function for command line --group argument
def get_llm_config_arg(llm_config_arg: str):
"""
Get a group of llm settings from the config file.
A group in config.toml can look like this:
```
[gpt-3.5-for-eval]
model = 'gpt-3.5-turbo'
api_key = '...'
temperature = 0.5
num_retries = 10
...
```
The user-defined group name, like "gpt-3.5-for-eval", is the argument to this function. The function will load the LLMConfig object
with the settings of this group, from the config file, and set it as the LLMConfig object for the app.
Args:
llm_config_arg: The group of llm settings to get from the config.toml file.
Returns:
LLMConfig: The LLMConfig object with the settings from the config file.
"""
# keep only the name, just in case
llm_config_arg = llm_config_arg.strip('[]')
logger.info(f'Loading llm config from {llm_config_arg}')
# load the toml file
try:
with open('config.toml', 'r', encoding='utf-8') as toml_file:
toml_config = toml.load(toml_file)
except FileNotFoundError as e:
logger.error(f'Config file not found: {e}')
return None
except toml.TomlDecodeError as e:
logger.error(f'Cannot parse llm group from {llm_config_arg}. Exception: {e}')
return None
# update the llm config with the specified section
if llm_config_arg in toml_config:
return LLMConfig(**toml_config[llm_config_arg])
logger.debug(f'Loading from toml failed for {llm_config_arg}')
return None
# Command line arguments
def get_parser() -> argparse.ArgumentParser:
"""
Get the parser for the command line arguments.
"""
parser = argparse.ArgumentParser(description='Run an agent with a specific task')
parser.add_argument(
'-d',
'--directory',
type=str,
help='The working directory for the agent',
)
parser.add_argument(
'-t', '--task', type=str, default='', help='The task for the agent to perform'
)
parser.add_argument(
'-f',
'--file',
type=str,
help='Path to a file containing the task. Overrides -t if both are provided.',
)
parser.add_argument(
'-c',
'--agent-cls',
default=config.agent.name,
type=str,
help='The agent class to use',
)
parser.add_argument(
'-m',
'--model-name',
default=config.llm.model,
type=str,
help='The (litellm) model name to use',
)
parser.add_argument(
'-i',
'--max-iterations',
default=config.max_iterations,
type=int,
help='The maximum number of iterations to run the agent',
)
parser.add_argument(
'-b',
'--max-budget-per-task',
default=config.max_budget_per_task,
type=float,
help='The maximum budget allowed per task, beyond which the agent will stop.',
)
# --eval configs are for evaluations only
parser.add_argument(
'--eval-output-dir',
default='evaluation/evaluation_outputs/outputs',
type=str,
help='The directory to save evaluation output',
)
parser.add_argument(
'--eval-n-limit',
default=None,
type=int,
help='The number of instances to evaluate',
)
parser.add_argument(
'--eval-num-workers',
default=4,
type=int,
help='The number of workers to use for evaluation',
)
parser.add_argument(
'--eval-note',
default=None,
type=str,
help='The note to add to the evaluation directory',
)
parser.add_argument(
'-l',
'--llm-config',
default=None,
type=str,
help='The group of llm settings, e.g. a [llama3] section in the toml file. Overrides model if both are provided.',
)
return parser
def parse_arguments() -> argparse.Namespace:
"""
Parse the command line arguments.
"""
parser = get_parser()
parsed_args, _ = parser.parse_known_args()
if parsed_args.directory:
config.workspace_base = os.path.abspath(parsed_args.directory)
print(f'Setting workspace base to {config.workspace_base}')
return parsed_args