|
265 | 265 | "X_num = X[:, -4:].astype(np.float32, copy=False)\n",
|
266 | 266 | "xmin, xmax = X_num.min(axis=0), X_num.max(axis=0)\n",
|
267 | 267 | "rng = (-1., 1.)\n",
|
268 |
| - "X_num_scaled = (X_num - xmin) / (xmax - xmin) * (rng[1] - rng[0]) + rng[0]\n", |
269 |
| - "X_num_scaled_train = X_num_scaled[:idx, :]\n", |
270 |
| - "X_num_scaled_test = X_num_scaled[idx+1:, :]" |
| 268 | + "X_num_scaled = (X_num - xmin) / (xmax - xmin) * (rng[1] - rng[0]) + rng[0]" |
271 | 269 | ]
|
272 | 270 | },
|
273 | 271 | {
|
|
284 | 282 | "outputs": [],
|
285 | 283 | "source": [
|
286 | 284 | "X_cat = X[:, :-4].copy()\n",
|
287 |
| - "ohe = OneHotEncoder(categories='auto')\n", |
288 |
| - "ohe.fit(X_cat)\n", |
| 285 | + "ohe = OneHotEncoder(categories='auto', sparse=False).fit(X_cat)\n", |
289 | 286 | "X_cat_ohe = ohe.transform(X_cat)"
|
290 | 287 | ]
|
291 | 288 | },
|
|
310 | 307 | }
|
311 | 308 | ],
|
312 | 309 | "source": [
|
313 |
| - "X = np.c_[X_cat_ohe.todense(), X_num_scaled].astype(np.float32, copy=False)\n", |
| 310 | + "X = np.c_[X_cat_ohe, X_num_scaled].astype(np.float32, copy=False)\n", |
314 | 311 | "X_train, X_test = X[:idx, :], X[idx+1:, :]\n",
|
315 | 312 | "print(X_train.shape, X_test.shape)"
|
316 | 313 | ]
|
|
601 | 598 | " print('\\nNumerical:')\n",
|
602 | 599 | " delta_num = X_cf_ord[0, -4:] - X_orig_ord[0, -4:]\n",
|
603 | 600 | " n_keys = len(list(cat_vars_ord.keys()))\n",
|
604 |
| - " for i in range(delta_num.shape[1]):\n", |
605 |
| - " if np.abs(delta_num[0, i]) > eps:\n", |
| 601 | + " for i in range(delta_num.shape[0]):\n", |
| 602 | + " if np.abs(delta_num[i]) > eps:\n", |
606 | 603 | " print('{}: {:.2f} --> {:.2f}'.format(feature_names[i+n_keys],\n",
|
607 | 604 | " X_orig_ord[0,i+n_keys],\n",
|
608 | 605 | " X_cf_ord[0,i+n_keys]))"
|
|
0 commit comments