- paper: Niklaus, C. , Cetto, M. , Freitas, André, & Handschuh, S. . (2018). A survey on open information extraction.
- paper: Etzioni, O. , Fader, A. , Christensen, J. , Soderland, S. , & Mausam. (2012). Open Information Extraction: The Second Generation. International Joint Conference on Ijcai. DBLP.
- paper: Saha Swarnadeep, Pal Harinder, Mausam. (2017). Bootstrapping for Numerical Open IE. 10.18653/v1/P17-2050.
- paper: 王莉峰. (0). 领域自适应的中文实体关系抽取研究. (Doctoral dissertation, 哈尔滨工业大学).
- slide: Sina Miran. Brief Introduction and Review of Open Information Extraction (Open-IE) Systems. CS 290D Project Presentation.
- paper: 赵 军, 刘 康, 周光有, 蔡 黎. 开放式文本信息抽取[J]. 中文信息学报, 2011, 25(6): 98-111.
- paper: 秦兵, 刘安安, & 刘挺. (2015). 无指导的中文开放式实体关系抽取. 计算机研究与发展, 52(5), 1029-1035.
- link: https://github.com/gkiril/oie-resources
- author: Kiril Gashteovski
- note: a collection of papers for oie tasks.
- link: https://github.com/knowitall
- web: http://projectsweb.cs.washington.edu/research/knowitall/
- author: The University of Washington's Turing Center
- note: a project for open information extraction.
- extra: ReVerb, OLLIE.
- link: https://stanfordnlp.github.io/CoreNLP/openie.html
- author: Stanford
- link: http://openie.allenai.org/
- author: allennlp
- extra: OpenIE-5(the latest version).
- link: https://github.com/philipperemy/Stanford-OpenIE-Python
- author: Philippe Rémy
- note: a python wrapper for Stanford OpenIE system.
- link: https://github.com/loujie0822/DeepIE
- author: loujie0822
- note: information extraction based on deep learning, including papers and articles.
- link: https://github.com/gabrielStanovsky/supervised-oie
- author: Gabriel Stanovsky
- note: code for training a neural OpenIE model published in NAACL 2018.
- link: https://github.com/dair-iitd/imojie
- author: Data Analytics and Intelligence Research (DAIR) Group, IIT Delhi
- note: neural generation model for open information extraction in ACL 2020.
- link: https://github.com/ZhuiyiTechnology/AutoIE
- author: Zhuiyi Technology
- note: a task to build IE system with noise and incomplete annotations.
- link: https://github.com/thunlp/OpenHowNet
- author: THUNLP
- web: https://openhownet.thunlp.org/
- note: a project contains core data of HowNet and OpenHowNet API developed by THUNLP, which provides a convenient way to search information in HowNet, display sememe trees, calculate word similarity via sememes, etc.
- link: https://universal-ie.github.io
- paper: Lu, Y. , Liu, Q. , Dai, D. , Xiao, X. , Lin, H. , & Han, X. , et al. (2022). Unified structure generation for universal information extraction.
- code
- extra: UIE-PyTorch
- blog:
- link: https://github.com/gabrielStanovsky/oie-benchmark
- author: Gabriel Stanovsky
- note: framework for converting QA-SRL to Open-IE and evaluating Open IE parsers.
- link: https://github.com/ChristophAlt/pytorch-ie
- author: Christoph Alt
- note: state-of-the-art information extraction in pytorch.