- English Machine Reading Comprehension Datasets: A Survey
- RCPapers: Must-read papers on Machine Reading Comprehension, by THUNLP.
- Reading-Comprehension-Question-Answering-Papers: Survey on Machine Reading Comprehension, by Xanh Ho.
- MRC_book: 《机器阅读理解:算法与实践》代码, by Chenguang Zhu.
- Multi-hopRC: 多跳阅读理解相关论文, by Jiaan Wang.
- Sewon Min (민세원) personal homepage
- R-NET 2017: paper|code
- DrQA 2017: paper|code
- BiDAF 2018: paper|code|homepage
- QANet 2018: paper|code
- BERT-MRC(base) 2018: paper|code(multi-choices)|code(question-answering)
- NumNet 2019: paper|code
- Common-Sense MRC/QA(常识型任务)
- QASC:task|再下一城!HFL打破人类水平荣登常识推理挑战赛QASC榜首
- OpenBookQA:task|单模型常识推理首超人类!HFL登顶OpenBookQA挑战赛
- 常识问答研究综述 | 专知 2023-08-19
- Dialogue MRC/QA(对话型任务)
- Explainability in MRC/QA
- Knowledge Graph Question Answering
- Logical Reasoning(逻辑推理型任务)
- Multi-Hop MRC/QA(多跳推理型任务)
- CAIL: China AI Law Challenge(中国法研杯司法人工智能挑战赛(含阅读理解赛道)).
- C³: Multiple-Choice Chinese Machine Reading Comprehension Dataset.
- ChID: A Large-scale Chinese IDiom Dataset for Cloze Test.
- CLICR: Machine reading comprehension on CLInical Case Reports.
- CLUE阅读理解排行榜
- CMRC
- CMRC 2017: The 1st Evaluation Workshop on Chinese Machine Reading Comprehension.
- CMRC 2018: A Span-Extraction Dataset for Chinese Machine Reading Comprehension.
- CMRC 2019: A Sentence Cloze Dataset for Chinese Machine Reading Comprehension.
- CMRC 2020: Challenge of AI in Law (CAIL) for Chinese Machine Reading Comprehension.
- CMRC 2022: A Weak-Supervised Explainability-focused Dataset (from ExpMRC) for Chinese Machine Reading Comprehension.
- CoQA: A Conversational Question Answering Challenge.
- DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension.
- DRCD: Delta Reading Comprehension Dataset.
- DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
- DuReader from 千言(LUGE): a Chinese Machine Reading Comprehension Dataset from Real-world Applications.
- ExpMRC: Explainability Evaluation for Machine Reading Comprehension. 哈工大讯飞联合实验室发布可解释性阅读理解评测集ExpMRC
- FinQA(paper): A Dataset of Numerical Reasoning over Financial Data.
- FriendsQA: Open-Domain Question Answering on TV Show Transcripts.
- Hotpot: A Dataset for Diverse, Explainable Multi-hop Question Answering.
- insuranceQA: A Question Answering corpus in insurance domain.
- LES-MMRC: 莱斯杯:全国第二届“军事智能机器阅读”挑战赛 (方案)
- LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning.
- MCScript: A Novel Dataset for Assessing Machine Comprehension Using Script Knowledge.
- MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text.
- MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.
- NarrativeQA: The NarrativeQA Reading Comprehension Challenge.
- NewsQA: A Machine Comprehension Dataset.
- NumNet+ & NumNet+ v2: Machine Reading Comprehension with Numerical Reasoning.
- OpenBookQA: A New Dataset for Open Book Question Answering.
- QAConv: Question Answering on Informative Conversations.
- QASC: Question Answering via Sentence Composition.
- ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning.
- SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine.
- SQuAD: The Stanford Question Answering Dataset (v1.1 & v2.0).
- StreamingQA(paper): A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models.
- TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension.
- Question-Generation-Paper-List
- link: https://github.com/teacherpeterpan/Question-Generation-Paper-List
- author: Liangming Pan
- note: a summary of must-read papers for Neural Question Generation (NQG).
- Questgen.ai
- link: https://github.com/ramsrigouthamg/Questgen.ai
- author: Ramsri Goutham Golla
- note: question generation using state-of-the-art nlp algorithms.
- Question-Generation
- link: https://github.com/KristiyanVachev/Question-Generation
- author: Kristiyan Vachev
- note: generating multiple choice questions from text using Machine Learning..
- question_generator
- link: https://github.com/AMontgomerie/question_generator
- author: Adam Montgomerie
- note: an nlp system for generating reading comprehension questions.