|
26 | 26 |
|
27 | 27 | class TestHandlerStats(unittest.TestCase):
|
28 | 28 | def test_metrics_print(self):
|
29 |
| - log_stream = StringIO() |
30 |
| - log_handler = logging.StreamHandler(log_stream) |
31 |
| - log_handler.setLevel(logging.INFO) |
32 |
| - key_to_handler = "test_logging" |
33 |
| - key_to_print = "testing_metric" |
| 29 | + def event_filter(_, event): |
| 30 | + if event in [1, 2]: |
| 31 | + return True |
| 32 | + return False |
| 33 | + |
| 34 | + for epoch_log in [True, event_filter]: |
| 35 | + log_stream = StringIO() |
| 36 | + log_handler = logging.StreamHandler(log_stream) |
| 37 | + log_handler.setLevel(logging.INFO) |
| 38 | + key_to_handler = "test_logging" |
| 39 | + key_to_print = "testing_metric" |
34 | 40 |
|
35 |
| - # set up engine |
36 |
| - def _train_func(engine, batch): |
37 |
| - return [torch.tensor(0.0)] |
| 41 | + # set up engine |
| 42 | + def _train_func(engine, batch): |
| 43 | + return [torch.tensor(0.0)] |
38 | 44 |
|
39 |
| - engine = Engine(_train_func) |
| 45 | + engine = Engine(_train_func) |
40 | 46 |
|
41 |
| - # set up dummy metric |
42 |
| - @engine.on(Events.EPOCH_COMPLETED) |
43 |
| - def _update_metric(engine): |
44 |
| - current_metric = engine.state.metrics.get(key_to_print, 0.1) |
45 |
| - engine.state.metrics[key_to_print] = current_metric + 0.1 |
| 47 | + # set up dummy metric |
| 48 | + @engine.on(Events.EPOCH_COMPLETED) |
| 49 | + def _update_metric(engine): |
| 50 | + current_metric = engine.state.metrics.get(key_to_print, 0.1) |
| 51 | + engine.state.metrics[key_to_print] = current_metric + 0.1 |
46 | 52 |
|
47 |
| - # set up testing handler |
48 |
| - logger = logging.getLogger(key_to_handler) |
49 |
| - logger.setLevel(logging.INFO) |
50 |
| - logger.addHandler(log_handler) |
51 |
| - stats_handler = StatsHandler(iteration_log=False, epoch_log=True, name=key_to_handler) |
52 |
| - stats_handler.attach(engine) |
53 |
| - |
54 |
| - engine.run(range(3), max_epochs=2) |
| 53 | + # set up testing handler |
| 54 | + logger = logging.getLogger(key_to_handler) |
| 55 | + logger.setLevel(logging.INFO) |
| 56 | + logger.addHandler(log_handler) |
| 57 | + stats_handler = StatsHandler(iteration_log=False, epoch_log=epoch_log, name=key_to_handler) |
| 58 | + stats_handler.attach(engine) |
55 | 59 |
|
56 |
| - # check logging output |
57 |
| - output_str = log_stream.getvalue() |
58 |
| - log_handler.close() |
59 |
| - has_key_word = re.compile(f".*{key_to_print}.*") |
60 |
| - content_count = 0 |
61 |
| - for line in output_str.split("\n"): |
62 |
| - if has_key_word.match(line): |
63 |
| - content_count += 1 |
64 |
| - self.assertTrue(content_count > 0) |
| 60 | + max_epochs = 4 |
| 61 | + engine.run(range(3), max_epochs=max_epochs) |
| 62 | + |
| 63 | + # check logging output |
| 64 | + output_str = log_stream.getvalue() |
| 65 | + log_handler.close() |
| 66 | + has_key_word = re.compile(f".*{key_to_print}.*") |
| 67 | + content_count = 0 |
| 68 | + for line in output_str.split("\n"): |
| 69 | + if has_key_word.match(line): |
| 70 | + content_count += 1 |
| 71 | + if epoch_log is True: |
| 72 | + self.assertTrue(content_count == max_epochs) |
| 73 | + else: |
| 74 | + self.assertTrue(content_count == 2) # 2 = len([1, 2]) from event_filter |
65 | 75 |
|
66 | 76 | def test_loss_print(self):
|
67 |
| - log_stream = StringIO() |
68 |
| - log_handler = logging.StreamHandler(log_stream) |
69 |
| - log_handler.setLevel(logging.INFO) |
70 |
| - key_to_handler = "test_logging" |
71 |
| - key_to_print = "myLoss" |
72 |
| - |
73 |
| - # set up engine |
74 |
| - def _train_func(engine, batch): |
75 |
| - return [torch.tensor(0.0)] |
| 77 | + def event_filter(_, event): |
| 78 | + if event in [1, 3]: |
| 79 | + return True |
| 80 | + return False |
| 81 | + |
| 82 | + for iteration_log in [True, event_filter]: |
| 83 | + log_stream = StringIO() |
| 84 | + log_handler = logging.StreamHandler(log_stream) |
| 85 | + log_handler.setLevel(logging.INFO) |
| 86 | + key_to_handler = "test_logging" |
| 87 | + key_to_print = "myLoss" |
76 | 88 |
|
77 |
| - engine = Engine(_train_func) |
| 89 | + # set up engine |
| 90 | + def _train_func(engine, batch): |
| 91 | + return [torch.tensor(0.0)] |
78 | 92 |
|
79 |
| - # set up testing handler |
80 |
| - logger = logging.getLogger(key_to_handler) |
81 |
| - logger.setLevel(logging.INFO) |
82 |
| - logger.addHandler(log_handler) |
83 |
| - stats_handler = StatsHandler(iteration_log=True, epoch_log=False, name=key_to_handler, tag_name=key_to_print) |
84 |
| - stats_handler.attach(engine) |
| 93 | + engine = Engine(_train_func) |
85 | 94 |
|
86 |
| - engine.run(range(3), max_epochs=2) |
| 95 | + # set up testing handler |
| 96 | + logger = logging.getLogger(key_to_handler) |
| 97 | + logger.setLevel(logging.INFO) |
| 98 | + logger.addHandler(log_handler) |
| 99 | + stats_handler = StatsHandler( |
| 100 | + iteration_log=iteration_log, epoch_log=False, name=key_to_handler, tag_name=key_to_print |
| 101 | + ) |
| 102 | + stats_handler.attach(engine) |
87 | 103 |
|
88 |
| - # check logging output |
89 |
| - output_str = log_stream.getvalue() |
90 |
| - log_handler.close() |
91 |
| - has_key_word = re.compile(f".*{key_to_print}.*") |
92 |
| - content_count = 0 |
93 |
| - for line in output_str.split("\n"): |
94 |
| - if has_key_word.match(line): |
95 |
| - content_count += 1 |
96 |
| - self.assertTrue(content_count > 0) |
| 104 | + num_iters = 3 |
| 105 | + max_epochs = 2 |
| 106 | + engine.run(range(num_iters), max_epochs=max_epochs) |
| 107 | + |
| 108 | + # check logging output |
| 109 | + output_str = log_stream.getvalue() |
| 110 | + log_handler.close() |
| 111 | + has_key_word = re.compile(f".*{key_to_print}.*") |
| 112 | + content_count = 0 |
| 113 | + for line in output_str.split("\n"): |
| 114 | + if has_key_word.match(line): |
| 115 | + content_count += 1 |
| 116 | + if iteration_log is True: |
| 117 | + self.assertTrue(content_count == num_iters * max_epochs) |
| 118 | + else: |
| 119 | + self.assertTrue(content_count == 2) # 2 = len([1, 3]) from event_filter |
97 | 120 |
|
98 | 121 | def test_loss_dict(self):
|
99 | 122 | log_stream = StringIO()
|
|
0 commit comments