-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_paccmann_rl.py
287 lines (255 loc) · 9.14 KB
/
train_paccmann_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import json
import logging
import os
import sys
import numpy as np
import pandas as pd
from paccmann_chemistry.models import (
StackGRUDecoder, StackGRUEncoder, TeacherVAE
)
from paccmann_chemistry.utils import get_device
from paccmann_generator import ReinforceOmic
from paccmann_generator.plot_utils import plot_and_compare, plot_loss
from paccmann_generator.utils import add_avg_profile, omics_data_splitter
from paccmann_omics.encoders import ENCODER_FACTORY
from paccmann_predictor.models import MODEL_FACTORY
from pytoda.smiles.smiles_language import SMILESLanguage
from paccmann_generator.utils import disable_rdkit_logging
# setup logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging.getLogger('train_paccmann_rl')
logger_m = logging.getLogger('matplotlib')
logger_m.setLevel(logging.WARNING)
# yapf: disable
parser = argparse.ArgumentParser(description='PaccMann^RL training script')
parser.add_argument(
'mol_model_path', type=str, help='Path to chemistry model'
)
parser.add_argument(
'omics_model_path', type=str, help='Path to omics model'
)
parser.add_argument(
'ic50_model_path', type=str, help='Path to pretrained ic50 model'
)
parser.add_argument(
'omics_data_path', type=str, help='Omics data path to condition generation'
)
parser.add_argument(
'params_path', type=str, help='Model params json file directory'
)
parser.add_argument(
'model_name', type=str, help='Name for the trained model.'
)
parser.add_argument(
'site', type=str, help='Name of the cancer site for conditioning.'
)
args = parser.parse_args()
# yapf: enable
def main(*, parser_namespace):
disable_rdkit_logging()
# read the params json
params = dict()
with open(parser_namespace.params_path) as f:
params.update(json.load(f))
# get params
mol_model_path = params.get(
'mol_model_path', parser_namespace.mol_model_path
)
omics_model_path = params.get(
'omics_model_path', parser_namespace.omics_model_path
)
ic50_model_path = params.get(
'ic50_model_path', parser_namespace.ic50_model_path
)
omics_data_path = params.get(
'omics_data_path', parser_namespace.omics_data_path
)
model_name = params.get(
'model_name', parser_namespace.model_name
) # yapf: disable
site = params.get(
'site', parser_namespace.site
) # yapf: disable
params['site'] = site
logger.info(f'Model with name {model_name} starts.')
# Load omics profiles for conditional generation,
# complement with avg per site
omics_df = pd.read_pickle(omics_data_path)
omics_df = add_avg_profile(omics_df)
# Restore SMILES Model
with open(os.path.join(mol_model_path, 'model_params.json')) as f:
mol_params = json.load(f)
gru_encoder = StackGRUEncoder(mol_params)
gru_decoder = StackGRUDecoder(mol_params)
generator = TeacherVAE(gru_encoder, gru_decoder)
generator.load(
os.path.join(
mol_model_path,
f"weights/best_{params.get('smiles_metric', 'rec')}.pt"
),
map_location=get_device()
)
# Load languages
generator_smiles_language = SMILESLanguage.load(
os.path.join(mol_model_path, 'selfies_language.pkl')
)
generator._associate_language(generator_smiles_language)
# Restore omics model
with open(os.path.join(omics_model_path, 'model_params.json')) as f:
cell_params = json.load(f)
# Define network
cell_encoder = ENCODER_FACTORY['dense'](cell_params)
cell_encoder.load(
os.path.join(
omics_model_path,
f"weights/best_{params.get('omics_metric','both')}_encoder.pt"
),
map_location=get_device()
)
cell_encoder.eval()
# Restore PaccMann
with open(os.path.join(ic50_model_path, 'model_params.json')) as f:
paccmann_params = json.load(f)
paccmann_predictor = MODEL_FACTORY['mca'](paccmann_params)
paccmann_predictor.load(
os.path.join(
ic50_model_path,
f"weights/best_{params.get('ic50_metric', 'rmse')}_mca.pt"
),
map_location=get_device()
)
paccmann_predictor.eval()
paccmann_smiles_language = SMILESLanguage.load(
os.path.join(ic50_model_path, 'smiles_language.pkl')
)
paccmann_predictor._associate_language(paccmann_smiles_language)
# Specifies the baseline model used for comparison
baseline = ReinforceOmic(
generator, cell_encoder, paccmann_predictor, omics_df, params,
'baseline', logger
)
# Create a fresh model that will be optimized
gru_encoder_rl = StackGRUEncoder(mol_params)
gru_decoder_rl = StackGRUDecoder(mol_params)
generator_rl = TeacherVAE(gru_encoder_rl, gru_decoder_rl)
generator_rl.load(
os.path.join(
mol_model_path, f"weights/best_{params.get('metric', 'rec')}.pt"
),
map_location=get_device()
)
generator_rl.eval()
generator_rl._associate_language(generator_smiles_language)
cell_encoder_rl = ENCODER_FACTORY['dense'](cell_params)
cell_encoder_rl.load(
os.path.join(
omics_model_path,
f"weights/best_{params.get('metric', 'both')}_encoder.pt"
),
map_location=get_device()
)
cell_encoder_rl.eval()
model_folder_name = site + '_' + model_name
learner = ReinforceOmic(
generator_rl, cell_encoder_rl, paccmann_predictor, omics_df, params,
model_folder_name, logger
)
# Split the samples for conditional generation and initialize training
train_omics, test_omics = omics_data_splitter(
omics_df, site, params.get('test_fraction', 0.2)
)
rewards, rl_losses = [], []
gen_mols, gen_cell, gen_ic50, modes = [], [], [], []
logger.info('Models restored, start training.')
for epoch in range(1, params['epochs'] + 1):
for step in range(1, params['steps']):
# Randomly sample a cell line:
cell_line = np.random.choice(train_omics)
rew, loss = learner.policy_gradient(
cell_line, epoch, params['batch_size']
)
print(
f"Epoch {epoch:d}/{params['epochs']:d}, step {step:d}/"
f"{params['steps']:d}\t loss={loss:.2f}, rew={rew:.2f}"
)
rewards.append(rew.item())
rl_losses.append(loss)
# Save model
learner.save(f'gen_{epoch}.pt', f'enc_{epoch}.pt')
# Compare baseline and trained model on cell line
base_smiles, base_preds = baseline.generate_compounds_and_evaluate(
epoch, params['eval_batch_size'], cell_line
)
smiles, preds = learner.generate_compounds_and_evaluate(
epoch, params['eval_batch_size'], cell_line
)
gs = [
s for i, s in enumerate(smiles)
if preds[i] < learner.ic50_threshold
]
gp = preds[preds < learner.ic50_threshold]
for p, s in zip(gp, gs):
gen_mols.append(s)
gen_cell.append(cell_line)
gen_ic50.append(p)
modes.append('train')
plot_and_compare(
base_preds, preds, site, cell_line, epoch, learner.model_path,
'train', params['eval_batch_size']
)
# Evaluate on a validation cell line.
eval_cell_line = np.random.choice(test_omics)
base_smiles, base_preds = baseline.generate_compounds_and_evaluate(
epoch, params['eval_batch_size'], eval_cell_line
)
smiles, preds = learner.generate_compounds_and_evaluate(
epoch, params['eval_batch_size'], eval_cell_line
)
plot_and_compare(
base_preds, preds, site, eval_cell_line, epoch, learner.model_path,
'test', params['eval_batch_size']
)
gs = [
s for i, s in enumerate(smiles)
if preds[i] < learner.ic50_threshold
]
gp = preds[preds < learner.ic50_threshold]
for p, s in zip(gp, gs):
gen_mols.append(s)
gen_cell.append(eval_cell_line)
gen_ic50.append(p)
modes.append('test')
inds = np.argsort(preds)
for i in inds[:5]:
logger.info(
f'Epoch {epoch:d}, generated {smiles[i]} against '
f'{eval_cell_line}.\n Predicted IC50 = {preds[i]}. '
)
# Save results (good molecules!) in DF
df = pd.DataFrame(
{
'cell_line': gen_cell,
'SMILES': gen_mols,
'IC50': gen_ic50,
'mode': modes,
'tox21': [learner.tox21(s) for s in gen_mols]
}
)
df.to_csv(os.path.join(learner.model_path, 'results', 'generated.csv'))
# Plot loss development
loss_df = pd.DataFrame({'loss': rl_losses, 'rewards': rewards})
loss_df.to_csv(
learner.model_path + '/results/loss_reward_evolution.csv'
)
plot_loss(
rl_losses,
rewards,
params['epochs'],
cell_line,
learner.model_path,
rolling=5,
site=site
)
if __name__ == '__main__':
main(parser_namespace=args)