|
| 1 | + |
| 2 | +The Distributed Generator Component found in references 1 and 2. |
| 3 | + |
| 4 | +Parameters: |
| 5 | + + $\omega_b$ - Reference Rotating Frame |
| 6 | + + $\omega_c$ - Cutoff Frequency |
| 7 | + + $m_p$ - Drop Gain, Frequency Range |
| 8 | + + $V_n$ - Nominal Set Point of D-Axis Output Voltage |
| 9 | + + $n_q$ - Voltage Range |
| 10 | + + $F$ - PI Controller Parameter in 1 & 2 |
| 11 | + + $K_{pv}$ - PI Controller Parameter in 1 & 2 |
| 12 | + + $K_{iv}$ - PI Controller Parameter in 1 & 2 |
| 13 | + + $K_{pc}$ - PI Controller Parameter in 1 & 2 |
| 14 | + + $C_f$ - Shunt?? |
| 15 | + + $r_{Lf}$ - Resistance of line f |
| 16 | + + $L_{f}$ - Inductance of line f |
| 17 | + + $r_{Lc}$ - Resistance of line c |
| 18 | + + $L_{c}$ - Inductance of line c |
| 19 | + |
| 20 | +Variables (External): |
| 21 | + + $\omega_{ref}$ - Network reference $\omega$ |
| 22 | + + $V_{a}$ - Incoming Bus Voltage (a) |
| 23 | + + $V_{b}$ - Incoming Bus Voltage (b) |
| 24 | + |
| 25 | +Variables (Internal): |
| 26 | + + $\delta$ - Rotor difference from reference |
| 27 | + + $\omega$ - Frequency |
| 28 | + + $P$ - Real Power |
| 29 | + + $Q$ - Reactive Power |
| 30 | + + $\phi_{d}$ - Output Voltage Control PI Variable |
| 31 | + + $\phi_{q}$ - Output Voltage Control PI Variable |
| 32 | + + $\gamma_{d}$ - Output Current Control PI Variable |
| 33 | + + $\gamma_{q}$ - Output Current Control PI Variable |
| 34 | + + $i_{ld}$ - Current of Line l (dq-space) |
| 35 | + + $i_{lq}$ - Current of Line l (dq-space) |
| 36 | + + $v_{od}$ - Voltage of Bus o (dq-space) |
| 37 | + + $v_{oq}$ - Voltage of Bus o (dq-space) |
| 38 | + + $i_{od}$ - Current of Line o (dq-space) |
| 39 | + + $i_{oq}$ - Current of Line o (dq-space) |
| 40 | + |
| 41 | +Equations (External, Residuals): |
| 42 | + + $\omega_{com} - \omega$    (If this generator is considered the reference one, otherwise 0) |
| 43 | + + $\cos(\delta) i_{od} - \sin(\delta) i_{oq}$ |
| 44 | + + $\sin(\delta) i_{od} + \cos(\delta) i_{oq}$ |
| 45 | + |
| 46 | +Equations (Internal): |
| 47 | + + $\omega_{com} = \omega_{b} - m_{p} P$ |
| 48 | + + $\frac{d\delta}{dt} = \omega_{com} - \omega$ |
| 49 | + + $\frac{dP}{dt} = \omega_c ( v_{od} i_{od} + v_{oq} i_{oq} - P)$ |
| 50 | + + $\frac{dQ}{dt} = \omega_c ( v_{od} i_{oq} + v_{oq} i_{od} - Q)$ |
| 51 | + + $v_{od}^* = V_{n} - n_q Q$ |
| 52 | + + $v_{oq}^* = 0$ |
| 53 | + + $\frac{d\phi_{d}}{dt} = v_{od}^* - v_{od}$ |
| 54 | + + $\frac{d\phi_{q}}{dt} = v_{oq}^* - v_{oq}$ |
| 55 | + + $i_{ld}^* = F i_{od} - \omega_{b} C_{f} v_{oq} + K_{pv} (v_{od}^* - v_{od}) + K_{iv} \phi_{d}$ |
| 56 | + + $i_{lq}^* = F i_{oq} - \omega_{b} C_{f} v_{od} + K_{pv} (v_{oq}^* - v_{oq}) + K_{iv} \phi_{q}$ |
| 57 | + + $\frac{d\gamma_{d}}{dt} = i_{ld}^* - i_{ld}$ |
| 58 | + + $\frac{d\gamma_{q}}{dt} = i_{lq}^* - i_{lq}$ |
| 59 | + + $v_{id}^* = -\omega_{b} L_{f} i_{lq} + K_{pc} ( i_{ld}^* - i_{ld}) + K_{ic} \gamma_{d}$ |
| 60 | + + $v_{iq}^* = -\omega_{b} L_{f} i_{ld} + K_{pc} ( i_{lq}^* - i_{lq}) + K_{ic} \gamma_{q}$ |
| 61 | + + $\frac{di_{ld}}{dt} = -(\frac{r_{Lf}}{L_{f}}) i_{ld} + \omega_{com} i_{lq} + \frac{v_{id}^* - v_{id}}{L_f}$ |
| 62 | + + $\frac{di_{lq}}{dt} = -(\frac{r_{Lf}}{L_{f}}) i_{lq} + \omega_{com} i_{ld} + \frac{v_{iq}^* - v_{iq}}{L_f}$ |
| 63 | + + $\frac{dv_{od}}{dt} = \omega_{com} v_{oq} + \frac{i_{ld} - i_{od}}{C_f}$ |
| 64 | + + $\frac{dv_{oq}}{dt} = -\omega_{com} v_{od} + \frac{i_{lq} - i_{oq}}{C_f}$ |
| 65 | + + $V_{bd,in} = \cos(\delta) V_{a} - \sin(\delta) V_{b}$ |
| 66 | + + $V_{bq,in} = -\sin(\delta) V_{a} + \cos(\delta) V_{b}$ |
| 67 | + + $\frac{di_{od}}{dt} = -(\frac{r_{Lc}}{L_{c}}) i_{od} + \omega_{com} i_{oq} + \frac{v_{od} - V_{bd,in}}{L_f}$ |
| 68 | + + $\frac{di_{oq}}{dt} = -(\frac{r_{Lc}}{L_{c}}) i_{oq} + \omega_{com} i_{ld} + \frac{v_{oq} - V_{bq,in}}{L_f}$ |
| 69 | + |
| 70 | +Note all internal direct equalities are simplified into the differential equations. |
| 71 | + |
| 72 | + |
| 73 | +1. Pogaku, Nagaraju, Milan Prodanovic, and Timothy C. Green. "Modeling, analysis and testing of autonomous operation of an inverter-based microgrid." IEEE Transactions on power electronics 22.2 (2007): 613-625. |
| 74 | +2. Bidram, Ali, Frank L. Lewis, and Ali Davoudi. "Distributed control systems for small-scale power networks: Using multiagent cooperative control theory." IEEE Control systems magazine 34.6 (2014): 56-77. |
0 commit comments