@@ -86,10 +86,10 @@ Differential equations:
86
86
```
87
87
Algebraic equations:
88
88
``` math
89
- V_{d,1} = -\psi_{qpp,1}(\psi_{qp^{\prime} ,1}E_{dp,1})(1+\omega_1)
89
+ V_{d,1} = -\psi_{qpp,1}(\psi_{qp,1}, E_{dp,1})(1+\omega_1)
90
90
```
91
91
``` math
92
- V_{q,1} = \psi_{dpp,1}(\psi_{dp^{\prime} ,1}E_{qp,1})(1+\omega_1)
92
+ V_{q,1} = \psi_{dpp,1}(\psi_{dp,1}, E_{qp,1})(1+\omega_1)
93
93
```
94
94
``` math
95
95
I_{d,1} = I_{G,r,1}\sin(\delta_1) - I_{G,i,1}\cos(\delta_1)
@@ -105,6 +105,45 @@ V_{d,1} = V_{r,1}\sin(\delta_1) - V_{i,1}\cos(\delta_1) + I_{d,1} R_{a,1} -I_{q
105
105
``` math
106
106
V_{q,1} = V_{r, 1}\cos(\delta_1) + V_{i,1}\sin(\delta_1) + I_{d,1}X_{qpp,1} + I_{q,1}R_{a,1}
107
107
```
108
+
109
+ We can lump together the algebraic and network interface equations to get the following equivalent constraint equations:
110
+ ``` math
111
+ \left[\begin{array}{c}
112
+ I_{d} \\
113
+ I_{q}
114
+ \end{array}\right] =
115
+ \left[\begin{array}{cr}
116
+ \sin(\delta_1) & -\cos(\delta_1)\\
117
+ \cos(\delta_1) & \sin(\delta_1)
118
+ \end{array}\right]
119
+ \left[\begin{array}{c}
120
+ I_{G,r,1} \\
121
+ I_{G,i,1}
122
+ \end{array}\right]
123
+ ```
124
+ ``` math
125
+ \left[\begin{array}{c}
126
+ -\psi_{qpp,1}(\psi_{qp,1},E_{dp,1})(1+\omega_1) \\
127
+ \psi_{dpp,1}(\psi_{dp,1},E_{qp,1})(1+\omega_1)
128
+ \end{array}\right]
129
+ - \left[\begin{array}{cr}
130
+ \sin(\delta_1) & -\cos(\delta_1)\\
131
+ \cos(\delta_1) & \sin(\delta_1)
132
+ \end{array}\right]
133
+ \left[\begin{array}{c}
134
+ V_{r,1} \\
135
+ V_{i,1}
136
+ \end{array}\right]
137
+ =
138
+ \left[\begin{array}{cr}
139
+ R_a & -X_{qpp}\\
140
+ X_{qpp} & R_a
141
+ \end{array}\right]
142
+ \left[\begin{array}{c}
143
+ I_{d} \\
144
+ I_{q}
145
+ \end{array}\right]
146
+ ```
108
147
## Generator 3
109
148
Generator connected to bus 3:<br >
110
149
Differential equations:
0 commit comments