-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutilities.py
585 lines (519 loc) · 24.7 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
#
# Copyright 2022 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
from copy import copy
import numpy as np
import os
import math
from PIL import Image
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.trt import CreateConfig, Profile
from polygraphy.backend.trt import engine_from_bytes, engine_from_network, network_from_onnx_path, save_engine
from polygraphy.backend.trt import util as trt_util
from polygraphy import cuda
import random
from scipy import integrate
import tensorrt as trt
import torch
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
class Engine():
def __init__(
self,
model_name,
engine_dir,
):
self.engine_path = os.path.join(engine_dir, model_name + '.plan')
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
def __del__(self):
[
buf.free() for buf in self.buffers.values()
if isinstance(buf, cuda.DeviceArray)
]
del self.engine
del self.context
del self.buffers
del self.tensors
def build(self, onnx_path, fp16, input_profile=None, enable_preview=False):
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
preview_features = []
if enable_preview:
trt_version = [int(i) for i in trt.__version__.split(".")]
# FASTER_DYNAMIC_SHAPES_0805 should only be used for TRT 8.5.1 or above.
if trt_version[0] > 8 or \
(trt_version[0] == 8 and (trt_version[1] > 5 or (trt_version[1] == 5 and trt_version[2] >= 1))):
preview_features = [
trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805
]
engine = engine_from_network(network_from_onnx_path(onnx_path),
config=CreateConfig(
fp16=fp16,
profiles=[p],
preview_features=preview_features))
save_engine(engine, path=self.engine_path)
def activate(self):
print(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device='cuda'):
for idx in range(trt_util.get_bindings_per_profile(self.engine)):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt_util.np_dtype_from_trt(
self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
# Workaround to convert np dtype to torch
np_type_tensor = np.empty(shape=[], dtype=dtype)
torch_type_tensor = torch.from_numpy(np_type_tensor)
tensor = torch.empty(
tuple(shape), dtype=torch_type_tensor.dtype).to(device=device)
self.tensors[binding] = tensor
self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(),
shape=shape,
dtype=dtype)
def infer(self, feed_dict, stream):
start_binding, end_binding = trt_util.get_active_profile_bindings(
self.context)
# shallow copy of ordered dict
device_buffers = copy(self.buffers)
for name, buf in feed_dict.items():
assert isinstance(buf, cuda.DeviceView)
device_buffers[name] = buf
bindings = [0] * start_binding + [
buf.ptr for buf in device_buffers.values()
]
noerror = self.context.execute_async_v2(bindings=bindings,
stream_handle=stream.ptr)
if not noerror:
raise ValueError(f"ERROR: inference failed.")
return self.tensors
class LMSDiscreteScheduler():
def __init__(
self,
device='cuda',
beta_start=0.00085,
beta_end=0.012,
num_train_timesteps=1000,
):
self.num_train_timesteps = num_train_timesteps
self.order = 4
self.beta_start = beta_start
self.beta_end = beta_end
betas = (torch.linspace(beta_start**0.5,
beta_end**0.5,
self.num_train_timesteps,
dtype=torch.float32)**2)
alphas = 1.0 - betas
self.alphas_cumprod = torch.cumprod(alphas, dim=0)
sigmas = np.array(
((1 - self.alphas_cumprod) / self.alphas_cumprod)**0.5)
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas)
# standard deviation of the initial noise distribution
self.init_noise_sigma = self.sigmas.max()
self.device = device
def set_timesteps(self, steps):
self.num_inference_steps = steps
timesteps = np.linspace(0,
self.num_train_timesteps - 1,
steps,
dtype=float)[::-1].copy()
sigmas = np.array(
((1 - self.alphas_cumprod) / self.alphas_cumprod)**0.5)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas).to(device=self.device)
# Move all timesteps to correct device beforehand
self.timesteps = torch.from_numpy(timesteps).to(
device=self.device).float()
self.derivatives = []
def scale_model_input(self, sample: torch.FloatTensor, idx, *args,
**kwargs) -> torch.FloatTensor:
return sample * self.latent_scales[idx]
def configure(self):
order = self.order
self.lms_coeffs = []
self.latent_scales = [
1. / ((sigma**2 + 1)**0.5) for sigma in self.sigmas
]
def get_lms_coefficient(order, t, current_order):
"""
Compute a linear multistep coefficient.
"""
def lms_derivative(tau):
prod = 1.0
for k in range(order):
if current_order == k:
continue
prod *= (tau - self.sigmas[t - k]) / (
self.sigmas[t - current_order] - self.sigmas[t - k])
return prod
integrated_coeff = integrate.quad(lms_derivative,
self.sigmas[t],
self.sigmas[t + 1],
epsrel=1e-4)[0]
return integrated_coeff
for step_index in range(self.num_inference_steps):
order = min(step_index + 1, order)
self.lms_coeffs.append([
get_lms_coefficient(order, step_index, curr_order)
for curr_order in range(order)
])
def step(self, output, latents, idx, timestep):
# compute the previous noisy sample x_t -> x_t-1
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
sigma = self.sigmas[idx]
pred_original_sample = latents - sigma * output
# 2. Convert to an ODE derivative
derivative = (latents - pred_original_sample) / sigma
self.derivatives.append(derivative)
if len(self.derivatives) > self.order:
self.derivatives.pop(0)
# 3. Compute previous sample based on the derivatives path
prev_sample = latents + sum(
coeff * derivative for coeff, derivative in zip(
self.lms_coeffs[idx], reversed(self.derivatives)))
return prev_sample
class DPMScheduler():
def __init__(
self,
beta_start=0.00085,
beta_end=0.012,
num_train_timesteps=1000,
solver_order=2,
predict_epsilon=True,
thresholding=False,
dynamic_thresholding_ratio=0.995,
sample_max_value=1.0,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
device='cuda',
):
# this schedule is very specific to the latent diffusion model.
self.betas = (torch.linspace(beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32)**2)
self.device = device
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
self.algorithm_type = algorithm_type
self.predict_epsilon = predict_epsilon
self.thresholding = thresholding
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
self.sample_max_value = sample_max_value
self.lower_order_final = lower_order_final
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
raise NotImplementedError(
f"{algorithm_type} does is not implemented for {self.__class__}"
)
if solver_type not in ["midpoint", "heun"]:
raise NotImplementedError(
f"{solver_type} does is not implemented for {self.__class__}")
# setable values
self.num_inference_steps = None
self.solver_order = solver_order
self.num_train_timesteps = num_train_timesteps
self.solver_type = solver_type
self.first_order_first_coef = []
self.first_order_second_coef = []
self.second_order_first_coef = []
self.second_order_second_coef = []
self.second_order_third_coef = []
self.third_order_first_coef = []
self.third_order_second_coef = []
self.third_order_third_coef = []
self.third_order_fourth_coef = []
def scale_model_input(self, sample: torch.FloatTensor, *args,
**kwargs) -> torch.FloatTensor:
return sample
def configure(self):
lower_order_nums = 0
for step_index in range(self.num_inference_steps):
step_idx = step_index
timestep = self.timesteps[step_idx]
prev_timestep = 0 if step_idx == len(
self.timesteps) - 1 else self.timesteps[step_idx + 1]
self.dpm_solver_first_order_coefs_precompute(
timestep, prev_timestep)
timestep_list = [self.timesteps[step_index - 1], timestep]
self.multistep_dpm_solver_second_order_coefs_precompute(
timestep_list, prev_timestep)
timestep_list = [
self.timesteps[step_index - 2], self.timesteps[step_index - 1],
timestep
]
self.multistep_dpm_solver_third_order_coefs_precompute(
timestep_list, prev_timestep)
if lower_order_nums < self.solver_order:
lower_order_nums += 1
def dpm_solver_first_order_coefs_precompute(self, timestep, prev_timestep):
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[
timestep]
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep]
sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep]
h = lambda_t - lambda_s
if self.algorithm_type == "dpmsolver++":
self.first_order_first_coef.append(sigma_t / sigma_s)
self.first_order_second_coef.append(alpha_t *
(torch.exp(-h) - 1.0))
elif self.algorithm_type == "dpmsolver":
self.first_order_first_coef.append(alpha_t / alpha_s)
self.first_order_second_coef.append(sigma_t * (torch.exp(h) - 1.0))
def multistep_dpm_solver_second_order_coefs_precompute(
self, timestep_list, prev_timestep):
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[
s0], self.lambda_t[s1]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
if self.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.solver_type == "midpoint":
self.second_order_first_coef.append(sigma_t / sigma_s0)
self.second_order_second_coef.append(
(alpha_t * (torch.exp(-h) - 1.0)))
self.second_order_third_coef.append(
0.5 * (alpha_t * (torch.exp(-h) - 1.0)))
elif self.solver_type == "heun":
self.second_order_first_coef.append(sigma_t / sigma_s0)
self.second_order_second_coef.append(
(alpha_t * (torch.exp(-h) - 1.0)))
self.second_order_third_coef.append(
alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0))
elif self.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.solver_type == "midpoint":
self.second_order_first_coef.append(alpha_t / alpha_s0)
self.second_order_second_coef.append(
(sigma_t * (torch.exp(h) - 1.0)))
self.second_order_third_coef.append(
0.5 * (sigma_t * (torch.exp(h) - 1.0)))
elif self.solver_type == "heun":
self.second_order_first_coef.append(alpha_t / alpha_s0)
self.second_order_second_coef.append(
(sigma_t * (torch.exp(h) - 1.0)))
self.second_order_third_coef.append(
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)))
def multistep_dpm_solver_third_order_coefs_precompute(
self, timestep_list, prev_timestep):
t, s0 = prev_timestep, timestep_list[-1]
lambda_t, lambda_s0 = (self.lambda_t[t], self.lambda_t[s0])
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
if self.algorithm_type == "dpmsolver++":
self.third_order_first_coef.append(sigma_t / sigma_s0)
self.third_order_second_coef.append(alpha_t *
(torch.exp(-h) - 1.0))
self.third_order_third_coef.append(
alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0))
self.third_order_fourth_coef.append(
alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5))
elif self.algorithm_type == "dpmsolver":
self.third_order_first_coef.append(alpha_t / alpha_s0)
self.third_order_second_coef.append(sigma_t * (torch.exp(h) - 1.0))
self.third_order_third_coef.append(
sigma_t * ((torch.exp(h) - 1.0) / h - 1.0))
self.third_order_fourth_coef.append(
sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5))
def set_timesteps(self, num_inference_steps):
self.num_inference_steps = num_inference_steps
timesteps = (np.linspace(0, self.num_train_timesteps - 1,
num_inference_steps +
1).round()[::-1][:-1].copy().astype(np.int32))
self.timesteps = torch.from_numpy(timesteps).to(self.device)
self.model_outputs = [
None,
] * self.solver_order
self.lower_order_nums = 0
def convert_model_output(self, model_output, timestep, sample):
# DPM-Solver++ needs to solve an integral of the data prediction model.
if self.algorithm_type == "dpmsolver++":
if self.predict_epsilon:
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[
timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
else:
x0_pred = model_output
if self.thresholding:
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
dynamic_max_val = torch.quantile(
torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)),
self.dynamic_thresholding_ratio,
dim=1)
dynamic_max_val = torch.maximum(
dynamic_max_val,
self.sample_max_value *
torch.ones_like(dynamic_max_val).to(
dynamic_max_val.device),
)[(..., ) + (None, ) * (x0_pred.ndim - 1)]
x0_pred = torch.clamp(x0_pred, -dynamic_max_val,
dynamic_max_val) / dynamic_max_val
return x0_pred
# DPM-Solver needs to solve an integral of the noise prediction model.
elif self.algorithm_type == "dpmsolver":
if self.predict_epsilon:
return model_output
else:
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[
timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
return epsilon
def dpm_solver_first_order_update(self, idx, model_output, sample):
first_coef = self.first_order_first_coef[idx]
second_coef = self.first_order_second_coef[idx]
if self.algorithm_type == "dpmsolver++":
x_t = first_coef * sample - second_coef * model_output
elif self.algorithm_type == "dpmsolver":
x_t = first_coef * sample - second_coef * model_output
return x_t
def multistep_dpm_solver_second_order_update(self, idx, model_output_list,
timestep_list, prev_timestep,
sample):
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
m0, m1 = model_output_list[-1], model_output_list[-2]
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[
s0], self.lambda_t[s1]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
first_coef = self.second_order_first_coef[idx]
second_coef = self.second_order_second_coef[idx]
third_coef = self.second_order_third_coef[idx]
if self.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.solver_type == "midpoint":
x_t = (first_coef * sample - second_coef * D0 -
third_coef * D1)
elif self.solver_type == "heun":
x_t = (first_coef * sample - second_coef * D0 +
third_coef * D1)
elif self.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.solver_type == "midpoint":
x_t = (first_coef * sample - second_coef * D0 -
third_coef * D1)
elif self.solver_type == "heun":
x_t = (first_coef * sample - second_coef * D0 -
third_coef * D1)
return x_t
def multistep_dpm_solver_third_order_update(self, idx, model_output_list,
timestep_list, prev_timestep,
sample):
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[
-2], timestep_list[-3]
m0, m1, m2 = model_output_list[-1], model_output_list[
-2], model_output_list[-3]
lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
self.lambda_t[t],
self.lambda_t[s0],
self.lambda_t[s1],
self.lambda_t[s2],
)
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
r0, r1 = h_0 / h, h_1 / h
D0 = m0
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
first_coef = self.third_order_first_coef[idx]
second_coef = self.third_order_second_coef[idx]
third_coef = self.third_order_third_coef[idx]
fourth_coef = self.third_order_fourth_coef[idx]
if self.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (first_coef * sample - second_coef * D0 + third_coef * D1 -
fourth_coef * D2)
elif self.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (first_coef * sample - second_coef * D0 - third_coef * D1 -
fourth_coef * D2)
return x_t
def step(self, output, latents, step_index, timestep):
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
prev_timestep = 0 if step_index == len(
self.timesteps) - 1 else self.timesteps[step_index + 1]
lower_order_final = ((step_index == len(self.timesteps) - 1)
and self.lower_order_final
and len(self.timesteps) < 15)
lower_order_second = ((step_index == len(self.timesteps) - 2)
and self.lower_order_final
and len(self.timesteps) < 15)
output = self.convert_model_output(output, timestep, latents)
for i in range(self.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = output
if self.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
prev_sample = self.dpm_solver_first_order_update(
step_index, output, latents)
elif self.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
timestep_list = [self.timesteps[step_index - 1], timestep]
prev_sample = self.multistep_dpm_solver_second_order_update(
step_index, self.model_outputs, timestep_list, prev_timestep,
latents)
else:
timestep_list = [
self.timesteps[step_index - 2], self.timesteps[step_index - 1],
timestep
]
prev_sample = self.multistep_dpm_solver_third_order_update(
step_index, self.model_outputs, timestep_list, prev_timestep,
latents)
if self.lower_order_nums < self.solver_order:
self.lower_order_nums += 1
return prev_sample
def save_image(images, image_path_dir, image_name_prefix):
"""
Save the generated images to png files.
"""
images = ((images + 1) * 255 / 2).clamp(0, 255).detach().permute(
0, 2, 3, 1).round().type(torch.uint8).cpu().numpy()
for i in range(images.shape[0]):
image_path = os.path.join(
image_path_dir, image_name_prefix + str(i + 1) + '-' +
str(random.randint(1000, 9999)) + '.png')
print(f"Saving image {i+1} / {images.shape[0]} to: {image_path}")
Image.fromarray(images[i]).save(image_path)