@@ -47,6 +47,7 @@ const char * llm_type_name(llm_type type) {
47
47
case LLM_TYPE_475M: return " 475M" ;
48
48
case LLM_TYPE_770M: return " 770M" ;
49
49
case LLM_TYPE_780M: return " 780M" ;
50
+ case LLM_TYPE_0_3B: return " 0.3B" ;
50
51
case LLM_TYPE_0_5B: return " 0.5B" ;
51
52
case LLM_TYPE_0_6B: return " 0.6B" ;
52
53
case LLM_TYPE_1B: return " 1B" ;
@@ -1504,6 +1505,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
1504
1505
default : type = LLM_TYPE_UNKNOWN;
1505
1506
}
1506
1507
} break ;
1508
+ case LLM_ARCH_ERNIE4_5:
1509
+ {
1510
+ ml.get_key (LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps );
1511
+ switch (hparams.n_layer ) {
1512
+ case 18 : type = LLM_TYPE_0_3B; break ;
1513
+ default : type = LLM_TYPE_UNKNOWN;
1514
+ }
1515
+ } break ;
1507
1516
default : throw std::runtime_error (" unsupported model architecture" );
1508
1517
}
1509
1518
@@ -4344,6 +4353,40 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
4344
4353
4345
4354
layer.rope_freqs = create_tensor (tn (LLM_TENSOR_ROPE_FREQS, " weight" , i), {n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0 ));
4346
4355
4356
+ layer.ffn_down = create_tensor (tn (LLM_TENSOR_FFN_DOWN, " weight" , i), { n_ff, n_embd}, 0 );
4357
+ layer.ffn_up = create_tensor (tn (LLM_TENSOR_FFN_UP, " weight" , i), {n_embd, n_ff}, 0 );
4358
+ }
4359
+ } break ;
4360
+ case LLM_ARCH_ERNIE4_5:
4361
+ {
4362
+ tok_embd = create_tensor (tn (LLM_TENSOR_TOKEN_EMBD, " weight" ), {n_embd, n_vocab}, 0 );
4363
+
4364
+ // output
4365
+ output_norm = create_tensor (tn (LLM_TENSOR_OUTPUT_NORM, " weight" ), {n_embd}, 0 );
4366
+ output = create_tensor (tn (LLM_TENSOR_OUTPUT, " weight" ), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
4367
+ // if output is NULL, init from the input tok embed
4368
+ if (output == NULL ) {
4369
+ output = create_tensor (tn (LLM_TENSOR_TOKEN_EMBD, " weight" ), {n_embd, n_vocab}, TENSOR_DUPLICATED);
4370
+ }
4371
+
4372
+ for (int i = 0 ; i < n_layer; ++i) {
4373
+ auto & layer = layers[i];
4374
+
4375
+ layer.attn_norm = create_tensor (tn (LLM_TENSOR_ATTN_NORM, " weight" , i), {n_embd}, 0 );
4376
+
4377
+ layer.wq = create_tensor (tn (LLM_TENSOR_ATTN_Q, " weight" , i), {n_embd, n_embd_head_k * n_head}, 0 );
4378
+ layer.wk = create_tensor (tn (LLM_TENSOR_ATTN_K, " weight" , i), {n_embd, n_embd_gqa}, 0 );
4379
+ layer.wv = create_tensor (tn (LLM_TENSOR_ATTN_V, " weight" , i), {n_embd, n_embd_gqa}, 0 );
4380
+ layer.wo = create_tensor (tn (LLM_TENSOR_ATTN_OUT, " weight" , i), {n_embd_head_k * n_head, n_embd}, 0 );
4381
+
4382
+ // optional bias tensors
4383
+ layer.bq = create_tensor (tn (LLM_TENSOR_ATTN_Q, " bias" , i), {n_embd}, TENSOR_NOT_REQUIRED);
4384
+ layer.bk = create_tensor (tn (LLM_TENSOR_ATTN_K, " bias" , i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
4385
+ layer.bv = create_tensor (tn (LLM_TENSOR_ATTN_V, " bias" , i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
4386
+ layer.bo = create_tensor (tn (LLM_TENSOR_ATTN_OUT, " bias" , i), {n_embd}, TENSOR_NOT_REQUIRED);
4387
+
4388
+ layer.ffn_norm = create_tensor (tn (LLM_TENSOR_FFN_NORM, " weight" , i), {n_embd}, 0 );
4389
+ layer.ffn_gate = create_tensor (tn (LLM_TENSOR_FFN_GATE, " weight" , i), {n_embd, n_ff}, 0 );
4347
4390
layer.ffn_down = create_tensor (tn (LLM_TENSOR_FFN_DOWN, " weight" , i), { n_ff, n_embd}, 0 );
4348
4391
layer.ffn_up = create_tensor (tn (LLM_TENSOR_FFN_UP, " weight" , i), {n_embd, n_ff}, 0 );
4349
4392
}
@@ -14125,6 +14168,136 @@ struct llm_build_dots1 : public llm_graph_context {
14125
14168
}
14126
14169
};
14127
14170
14171
+ struct llm_build_ernie4_5 : public llm_graph_context {
14172
+ llm_build_ernie4_5 (const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
14173
+ const int64_t n_embd_head = hparams.n_embd_head_v ;
14174
+
14175
+ GGML_ASSERT (n_embd_head == hparams.n_embd_head_k );
14176
+ GGML_ASSERT (n_embd_head == hparams.n_rot );
14177
+
14178
+ ggml_tensor * cur;
14179
+ ggml_tensor * inpL;
14180
+
14181
+ inpL = build_inp_embd (model.tok_embd );
14182
+
14183
+ // inp_pos - contains the positions
14184
+ ggml_tensor * inp_pos = build_inp_pos ();
14185
+
14186
+ auto * inp_attn = build_attn_inp_kv_unified ();
14187
+
14188
+ for (int il = 0 ; il < n_layer; ++il) {
14189
+ ggml_tensor * inpSA = inpL;
14190
+
14191
+ // norm
14192
+ {
14193
+ cur = build_norm (inpL,
14194
+ model.layers [il].attn_norm , NULL ,
14195
+ LLM_NORM_RMS, il);
14196
+ cb (cur, " attn_norm" , il);
14197
+ }
14198
+
14199
+ // self-attention
14200
+ {
14201
+ ggml_tensor * Qcur = build_lora_mm (model.layers [il].wq , cur);
14202
+ cb (Qcur, " Qcur" , il);
14203
+ if (model.layers [il].bq ) {
14204
+ Qcur = ggml_add (ctx0, Qcur, model.layers [il].bq );
14205
+ cb (Qcur, " Qcur" , il);
14206
+ }
14207
+
14208
+ ggml_tensor * Kcur = build_lora_mm (model.layers [il].wk , cur);
14209
+ cb (Kcur, " Kcur" , il);
14210
+ if (model.layers [il].bk ) {
14211
+ Kcur = ggml_add (ctx0, Kcur, model.layers [il].bk );
14212
+ cb (Kcur, " Kcur" , il);
14213
+ }
14214
+
14215
+ ggml_tensor * Vcur = build_lora_mm (model.layers [il].wv , cur);
14216
+ cb (Vcur, " Vcur" , il);
14217
+ if (model.layers [il].bv ) {
14218
+ Vcur = ggml_add (ctx0, Vcur, model.layers [il].bv );
14219
+ cb (Vcur, " Vcur" , il);
14220
+ }
14221
+
14222
+ Qcur = ggml_reshape_3d (ctx0, Qcur, n_embd_head, n_head, n_tokens);
14223
+ Kcur = ggml_reshape_3d (ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
14224
+ Vcur = ggml_reshape_3d (ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
14225
+
14226
+ Qcur = ggml_rope_ext (
14227
+ ctx0, Qcur, inp_pos, nullptr ,
14228
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
14229
+ ext_factor, attn_factor, beta_fast, beta_slow
14230
+ );
14231
+
14232
+ Kcur = ggml_rope_ext (
14233
+ ctx0, Kcur, inp_pos, nullptr ,
14234
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
14235
+ ext_factor, attn_factor, beta_fast, beta_slow
14236
+ );
14237
+
14238
+ cb (Qcur, " Qcur" , il);
14239
+ cb (Kcur, " Kcur" , il);
14240
+ cb (Vcur, " Vcur" , il);
14241
+
14242
+ cur = build_attn (inp_attn, gf,
14243
+ model.layers [il].wo , NULL ,
14244
+ Qcur, Kcur, Vcur, nullptr , nullptr , 1 .0f /sqrtf (float (n_embd_head)), il);
14245
+ }
14246
+
14247
+ if (il == n_layer - 1 ) {
14248
+ // skip computing output for unused tokens
14249
+ ggml_tensor * inp_out_ids = build_inp_out_ids ();
14250
+ cur = ggml_get_rows (ctx0, cur, inp_out_ids);
14251
+ inpSA = ggml_get_rows (ctx0, inpSA, inp_out_ids);
14252
+ }
14253
+
14254
+ ggml_tensor * ffn_inp = ggml_add (ctx0, cur, inpSA);
14255
+ cb (ffn_inp, " ffn_inp" , il);
14256
+
14257
+ // feed-forward network
14258
+ {
14259
+ cur = build_norm (ffn_inp,
14260
+ model.layers [il].ffn_norm , NULL ,
14261
+ LLM_NORM_RMS, il);
14262
+ cb (cur, " ffn_norm" , il);
14263
+
14264
+ cur = build_ffn (cur,
14265
+ model.layers [il].ffn_up , NULL , NULL ,
14266
+ model.layers [il].ffn_gate , NULL , NULL ,
14267
+ model.layers [il].ffn_down , NULL , NULL ,
14268
+ NULL ,
14269
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
14270
+ cb (cur, " ffn_out" , il);
14271
+ }
14272
+
14273
+ cur = ggml_add (ctx0, cur, ffn_inp);
14274
+
14275
+ cur = build_cvec (cur, il);
14276
+ cb (cur, " l_out" , il);
14277
+
14278
+ // input for next layer
14279
+ inpL = cur;
14280
+ }
14281
+
14282
+ cur = inpL;
14283
+
14284
+ cur = build_norm (cur,
14285
+ model.output_norm , NULL ,
14286
+ LLM_NORM_RMS, -1 );
14287
+
14288
+ cb (cur, " result_norm" , -1 );
14289
+ res->t_embd = cur;
14290
+
14291
+ // lm_head
14292
+ cur = build_lora_mm (model.output , cur);
14293
+
14294
+ cb (cur, " result_output" , -1 );
14295
+ res->t_logits = cur;
14296
+
14297
+ ggml_build_forward_expand (gf, cur);
14298
+ }
14299
+ };
14300
+
14128
14301
struct llm_build_arcee : public llm_graph_context {
14129
14302
llm_build_arcee (const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
14130
14303
const int64_t n_embd_head = hparams.n_embd_head_v ;
@@ -14635,6 +14808,10 @@ llm_graph_result_ptr llama_model::build_graph(
14635
14808
{
14636
14809
llm = std::make_unique<llm_build_arcee>(*this , params, gf);
14637
14810
} break ;
14811
+ case LLM_ARCH_ERNIE4_5:
14812
+ {
14813
+ llm = std::make_unique<llm_build_ernie4_5>(*this , params, gf);
14814
+ } break ;
14638
14815
default :
14639
14816
GGML_ABORT (" fatal error" );
14640
14817
}
@@ -14786,6 +14963,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
14786
14963
case LLM_ARCH_BAILINGMOE:
14787
14964
case LLM_ARCH_NEO_BERT:
14788
14965
case LLM_ARCH_ARCEE:
14966
+ case LLM_ARCH_ERNIE4_5:
14789
14967
return LLAMA_ROPE_TYPE_NORM;
14790
14968
14791
14969
// the pairs of head values are offset by n_rot/2
0 commit comments