Skip to content

Latest commit

 

History

History
344 lines (268 loc) · 11.5 KB

4-2-有向图.md

File metadata and controls

344 lines (268 loc) · 11.5 KB

4.2 有向图

4.2.1 术语定义

4.2.2 有向图的数据类型

API:

方法adj()允许代码迭代从给定顶点相邻的顶点。

数据表示:

我们使用邻接列表表示,其中我们定义由边连接到每个顶点的顶点列表的顶点索引数组。

代码实现:

public class Digraph {
    private static final String NEWLINE = System.getProperty("line.separator");

    private final int V;           // number of vertices in this digraph
    private int E;                 // number of edges in this digraph
    private Bag<Integer>[] adj;    // adj[v] = adjacency list for vertex v
    private int[] indegree;        // indegree[v] = indegree of vertex v
    
    public Digraph(int V) {
        if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
        this.V = V;
        this.E = 0;
        indegree = new int[V];
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }

    public void addEdge(int v, int w) {
        validateVertex(v);
        validateVertex(w);
        adj[v].add(w);
        indegree[w]++;
        E++;
    }

    public Digraph reverse() {
        Digraph reverse = new Digraph(V);
        for (int v = 0; v < V; v++) {
            for (int w : adj(v)) {
                reverse.addEdge(w, v);
            }
        }
        return reverse;
    }
}

完整代码:Digraph.java

4.2.3 有向图的可达性

  • 单点可达性:给定有向图和源 s ,是否存在从s到v的有向路径? 如果是这样,找到这样的路径。 DirectedDFS.java 使用深度优先搜索来解决此问题。

    public class DirectedDFS {
        private boolean[] marked;  // marked[v] = true iff v is reachable from source(s)
        private int count;         // number of vertices reachable from source(s)
        
        public DirectedDFS(Digraph G, int s) {
            marked = new boolean[G.V()];
            validateVertex(s);
            dfs(G, s);
        }
    
        public DirectedDFS(Digraph G, Iterable<Integer> sources) {
            marked = new boolean[G.V()];
            validateVertices(sources);
            for (int v : sources) {
                if (!marked[v]) dfs(G, v);
            }
        }
    
        private void dfs(Digraph G, int v) { 
            count++;
            marked[v] = true;
            for (int w : G.adj(v)) {
                if (!marked[w]) dfs(G, w);
            }
        }
    
        public boolean marked(int v) {
            validateVertex(v);
            return marked[v];
        }
    
        public static void main(String[] args) {
    
            // read in digraph from command-line argument
            In in = new In(args[0]);
            Digraph G = new Digraph(in);
    
            // read in sources from command-line arguments
            Bag<Integer> sources = new Bag<Integer>();
            for (int i = 1; i < args.length; i++) {
                int s = Integer.parseInt(args[i]);
                sources.add(s);
            }
    
            // multiple-source reachability
            DirectedDFS dfs = new DirectedDFS(G, sources);
    
            // print out vertices reachable from sources
            for (int v = 0; v < G.V(); v++) {
                if (dfs.marked(v)) StdOut.print(v + " ");
            }
            StdOut.println();
        }
    }
  • 多点可达性:给定有向图和一组源顶点,是否存在从集合中的任何顶点到v的有向路径? DepthFirstDirectedPaths.java 使用深度优先搜索来解决此问题。

    可用于 java 程序中的 标记 - 清除的垃圾收集算法。标记-清除的垃圾回收策略会对每个对象保留一个位做垃圾收集之用。它会周期性地运行一个类似于 DirectedDFS 的有向图可达性算法来标记所有可以被访问到的对象,然后清理所有对象,回收没有被标记的对象,以腾出内存供新的对象使用。

  • 单点有向路径:给定有向图和源 s,是否存在从 s 到 v 的有向路径? 如果是这样,找到这样的路径。 DepthFirstDirectedPaths.java 使用深度优先搜索来解决此问题。

  • 单点最短有向路径:给定有向图和源 s,是否存在从 s 到 v 的有向路径? 如果是这样,找到最短的路径。 BreadthFirstDirectedPaths.java 使用广度优先搜索来解决此问题。

4.2.4 环和有向无环图

有向环在涉及处理有向图的应用程序中特别重要。

  • 判断有向图中是否有坏?有向环检测:给定的有向图是否有有向环? 如果是这样,找到这样一个循环。 DirectedCycle.java 使用深度优先搜索解决了这个问题。

    image-20190210144554271

    public class DirectedCycle {
        private boolean[] marked;        // marked[v] = has vertex v been marked?
        private int[] edgeTo;            // edgeTo[v] = previous vertex on path to v
        private boolean[] onStack;       // onStack[v] = is vertex on the stack?
        private Stack<Integer> cycle;    // directed cycle (or null if no such cycle)
    
        public DirectedCycle(Digraph G) {
            marked  = new boolean[G.V()];
            onStack = new boolean[G.V()];
            edgeTo  = new int[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v] && cycle == null) dfs(G, v);
        }
    
        private void dfs(Digraph G, int v) {
            onStack[v] = true;
            marked[v] = true;
            for (int w : G.adj(v)) {
    
                // short circuit if directed cycle found
                if (cycle != null) return;
    
                // found new vertex, so recur
                else if (!marked[w]) {
                    edgeTo[w] = v;
                    dfs(G, w);
                }
    
                // trace back directed cycle
                else if (onStack[w]) {
                    cycle = new Stack<Integer>();
                    for (int x = v; x != w; x = edgeTo[x]) {
                        cycle.push(x);
                    }
                    cycle.push(w);
                    cycle.push(v);
                    assert check();
                }
            }
            onStack[v] = false;
        }
    }
  • 顶点的深度优先次序与拓扑排序

    深度优先搜索搜索只访问每个顶点一次。 典型应用中顶点的三种排列顺序:

    • 前序:在递归调用之前将顶点加入队列。
    • 后序:在递归调用之后将顶点加入队列。
    • 逆后序:在递归调用之将顶点压入

    public class DepthFirstOrder {
        private boolean[] marked;          // marked[v] = has v been marked in dfs?
        private int[] pre;                 // pre[v]    = preorder  number of v
        private int[] post;                // post[v]   = postorder number of v
        private Queue<Integer> preorder;   // vertices in preorder
        private Queue<Integer> postorder;  // vertices in postorder
        private int preCounter;            // counter or preorder numbering
        private int postCounter;           // counter for postorder numbering
    
        public DepthFirstOrder(Digraph G) {
            pre    = new int[G.V()];
            post   = new int[G.V()];
            postorder = new Queue<Integer>();
            preorder  = new Queue<Integer>();
            marked    = new boolean[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v]) dfs(G, v);
    
            assert check();
        }
    
        public DepthFirstOrder(EdgeWeightedDigraph G) {
            pre    = new int[G.V()];
            post   = new int[G.V()];
            postorder = new Queue<Integer>();
            preorder  = new Queue<Integer>();
            marked    = new boolean[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v]) dfs(G, v);
        }
    
        private void dfs(Digraph G, int v) {
            marked[v] = true;
            pre[v] = preCounter++;
            preorder.enqueue(v);
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    dfs(G, w);
                }
            }
            postorder.enqueue(v);
            post[v] = postCounter++;
        }
    
        private void dfs(EdgeWeightedDigraph G, int v) {
            marked[v] = true;
            pre[v] = preCounter++;
            preorder.enqueue(v);
            for (DirectedEdge e : G.adj(v)) {
                int w = e.to();
                if (!marked[w]) {
                    dfs(G, w);
                }
            }
            postorder.enqueue(v);
            post[v] = postCounter++;
        }
    
        public int pre(int v) {
            validateVertex(v);
            return pre[v];
        }
    
        public int post(int v) {
            validateVertex(v);
            return post[v];
        }
    
        public Iterable<Integer> post() {
            return postorder;
        }
    
        public Iterable<Integer> pre() {
            return preorder;
        }
    
        public Iterable<Integer> reversePost() {
            Stack<Integer> reverse = new Stack<Integer>();
            for (int v : postorder)
                reverse.push(v);
            return reverse;
        }
    }

    完整代码:DepthFirstOrder.java

  • 拓扑排序

    • 当且仅当一幅有向图是无环图时才能进行拓扑排序。
    • 一幅有向无环图的拓扑顺序即为所有顶点的逆后序排列(证明见 p376)。
    public class Topological {
        private Iterable<Integer> order;  // topological order
        private int[] rank;               // rank[v] = rank of vertex v in order
    
        public Topological(Digraph G) {
            DirectedCycle finder = new DirectedCycle(G);
            if (!finder.hasCycle()) {
                DepthFirstOrder dfs = new DepthFirstOrder(G);
                order = dfs.reversePost();
                rank = new int[G.V()];
                int i = 0;
                for (int v : order)
                    rank[v] = i++;
            }
        }
    
        public Topological(EdgeWeightedDigraph G) {
            EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
            if (!finder.hasCycle()) {
                DepthFirstOrder dfs = new DepthFirstOrder(G);
                order = dfs.reversePost();
            }
        }
    
        public Iterable<Integer> order() {
            return order;
        }
    
        public static void main(String[] args) {
            String filename  = args[0];
            String delimiter = args[1];
            SymbolDigraph sg = new SymbolDigraph(filename, delimiter);
            Topological topological = new Topological(sg.digraph());
            for (int v : topological.order()) {
                StdOut.println(sg.nameOf(v));
            }
        }
    
    }

    完整代码: Topological.java