-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
169 lines (139 loc) · 6.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Trains a model, saving checkpoints and tensorboard summaries along
the way."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import json
import math
import os
import shutil
import sys
from timeit import default_timer as timer
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tqdm import trange
import dataset_input
from eval import evaluate
import resnet
import utilities
def train(config):
# seeding randomness
tf.set_random_seed(config.training.tf_random_seed)
np.random.seed(config.training.np_random_seed)
# Setting up training parameters
max_num_training_steps = config.training.max_num_training_steps
step_size_schedule = config.training.step_size_schedule
weight_decay = config.training.weight_decay
momentum = config.training.momentum
batch_size = config.training.batch_size
eval_during_training = config.training.eval_during_training
num_clean_examples = config.training.num_examples
if eval_during_training:
num_eval_steps = config.training.num_eval_steps
# Setting up output parameters
num_output_steps = config.training.num_output_steps
num_summary_steps = config.training.num_summary_steps
num_checkpoint_steps = config.training.num_checkpoint_steps
# Setting up the data and the model
dataset = dataset_input.CIFAR10Data(config,
seed=config.training.np_random_seed)
print('Num Poisoned Left: {}'.format(dataset.num_poisoned_left))
print('Poison Position: {}'.format(config.data.position))
print('Poison Color: {}'.format(config.data.color))
num_training_examples = len(dataset.train_data.xs)
global_step = tf.contrib.framework.get_or_create_global_step()
model = resnet.Model(config.model)
# uncomment to get a list of trainable variables
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
# Setting up the optimizer
boundaries = [int(sss[0]) for sss in step_size_schedule]
boundaries = boundaries[1:]
values = [sss[1] for sss in step_size_schedule]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32),
boundaries,
values)
total_loss = model.mean_xent + weight_decay * model.weight_decay_loss
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
train_step = optimizer.minimize( total_loss, global_step=global_step)
# Setting up the Tensorboard and checkpoint outputs
model_dir = config.model.output_dir
if eval_during_training:
eval_dir = os.path.join(model_dir, 'eval')
if not os.path.exists(eval_dir):
os.makedirs(eval_dir)
# We add accuracy and xent twice so we can easily make three types of
# comparisons in Tensorboard:
# - train vs eval (for a single run)
# - train of different runs
# - eval of different runs
saver = tf.train.Saver(max_to_keep=3)
tf.summary.scalar('accuracy_nat_train', model.accuracy, collections=['nat'])
tf.summary.scalar('accuracy_nat', model.accuracy, collections = ['nat'])
tf.summary.scalar('xent_nat_train', model.xent / batch_size,
collections=['nat'])
tf.summary.scalar('xent_nat', model.xent / batch_size, collections=['nat'])
tf.summary.image('images_nat_train', model.train_xs, collections=['nat'])
tf.summary.scalar('learning_rate', learning_rate, collections=['nat'])
nat_summaries = tf.summary.merge_all('nat')
with tf.Session() as sess:
print('Dataset Size: ', len(dataset.train_data.xs))
# Initialize the summary writer, global variables, and our time counter.
summary_writer = tf.summary.FileWriter(model_dir, sess.graph)
if eval_during_training:
eval_summary_writer = tf.summary.FileWriter(eval_dir)
sess.run(tf.global_variables_initializer())
training_time = 0.0
# Main training loop
for ii in range(max_num_training_steps+1):
x_batch, y_batch = dataset.train_data.get_next_batch(batch_size,
multiple_passes=True)
nat_dict = {model.x_input: x_batch,
model.y_input: y_batch,
model.is_training: False}
# Output to stdout
if ii % num_output_steps == 0:
nat_acc = sess.run(model.accuracy, feed_dict=nat_dict)
print('Step {}: ({})'.format(ii, datetime.now()))
print(' training nat accuracy {:.4}%'.format(nat_acc * 100))
if ii != 0:
print(' {} examples per second'.format(
num_output_steps * batch_size / training_time))
training_time = 0.0
# Tensorboard summaries
if ii % num_summary_steps == 0:
summary = sess.run(nat_summaries, feed_dict=nat_dict)
summary_writer.add_summary(summary, global_step.eval(sess))
# Write a checkpoint
if ii % num_checkpoint_steps == 0:
saver.save(sess,
os.path.join(model_dir, 'checkpoint'),
global_step=global_step)
if eval_during_training and ii % num_eval_steps == 0:
evaluate(model, sess, config, eval_summary_writer)
# Actual training step
start = timer()
nat_dict[model.is_training] = True
sess.run(train_step, feed_dict=nat_dict)
end = timer()
training_time += end - start
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train script options',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-c', '--config', type=str,
help='path to config file',
default='config.json', required=False)
args = parser.parse_args()
config_dict = utilities.get_config(args.config)
model_dir = config_dict['model']['output_dir']
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# keep the configuration file with the model for reproducibility
with open(os.path.join(model_dir, 'config.json'), 'w') as f:
json.dump(config_dict, f, sort_keys=True, indent=4)
config = utilities.config_to_namedtuple(config_dict)
train(config)