|
234 | 234 | FusionTree{Irrep[SU₂]}((1/2, 1/2, 1/2, 1/2, 1/2), 1/2, (true, false, false, true, false), (1, 1/2, 0))
|
235 | 235 | FusionTree{Irrep[SU₂]}((1/2, 1/2, 1/2, 1/2, 1/2), 1/2, (true, false, false, true, false), (0, 1/2, 1))
|
236 | 236 | FusionTree{Irrep[SU₂]}((1/2, 1/2, 1/2, 1/2, 1/2), 1/2, (true, false, false, true, false), (1, 1/2, 1))
|
237 |
| - FusionTree{Irrep[SU₂]}((1/2, 1/2, 1/2, 1/2, 1/2), 1/2, (true, false, false, true, false), (1, 3/2, 1))</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> iter = fusiontrees(ntuple(n->s, 16))</code><code class="nohighlight hljs ansi" style="display:block;">TensorKit.FusionTreeIterator{SU2Irrep, 16, NTuple{16, Tuple{SU2Irrep}}}(((Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),)), Irrep[SU₂](0), (false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false))</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> sum(n->1, iter)</code><code class="nohighlight hljs ansi" style="display:block;">1430</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> length(iter)</code><code class="nohighlight hljs ansi" style="display:block;">1430</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> @elapsed sum(n->1, iter)</code><code class="nohighlight hljs ansi" style="display:block;">0.048936806</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> @elapsed length(iter)</code><code class="nohighlight hljs ansi" style="display:block;">4.0626e-5</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> s2 = s ⊠ s</code><code class="nohighlight hljs ansi" style="display:block;">Irrep[SU₂ × SU₂](1/2, 1/2)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> collect(fusiontrees((s2,s2,s2,s2)))</code><code class="nohighlight hljs ansi" style="display:block;">4-element Vector{FusionTree{ProductSector{Tuple{SU2Irrep, SU2Irrep}}, 4, 2, 3}}: |
| 237 | + FusionTree{Irrep[SU₂]}((1/2, 1/2, 1/2, 1/2, 1/2), 1/2, (true, false, false, true, false), (1, 3/2, 1))</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> iter = fusiontrees(ntuple(n->s, 16))</code><code class="nohighlight hljs ansi" style="display:block;">TensorKit.FusionTreeIterator{SU2Irrep, 16, NTuple{16, Tuple{SU2Irrep}}}(((Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),), (Irrep[SU₂](1/2),)), Irrep[SU₂](0), (false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false))</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> sum(n->1, iter)</code><code class="nohighlight hljs ansi" style="display:block;">1430</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> length(iter)</code><code class="nohighlight hljs ansi" style="display:block;">1430</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> @elapsed sum(n->1, iter)</code><code class="nohighlight hljs ansi" style="display:block;">0.048244615</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> @elapsed length(iter)</code><code class="nohighlight hljs ansi" style="display:block;">3.9524e-5</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> s2 = s ⊠ s</code><code class="nohighlight hljs ansi" style="display:block;">Irrep[SU₂ × SU₂](1/2, 1/2)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> collect(fusiontrees((s2,s2,s2,s2)))</code><code class="nohighlight hljs ansi" style="display:block;">4-element Vector{FusionTree{ProductSector{Tuple{SU2Irrep, SU2Irrep}}, 4, 2, 3}}: |
238 | 238 | FusionTree{Irrep[SU₂ × SU₂]}(((1/2, 1/2), (1/2, 1/2), (1/2, 1/2), (1/2, 1/2)), (0, 0), (false, false, false, false), ((0, 0), (1/2, 1/2)))
|
239 | 239 | FusionTree{Irrep[SU₂ × SU₂]}(((1/2, 1/2), (1/2, 1/2), (1/2, 1/2), (1/2, 1/2)), (0, 0), (false, false, false, false), ((1, 0), (1/2, 1/2)))
|
240 | 240 | FusionTree{Irrep[SU₂ × SU₂]}(((1/2, 1/2), (1/2, 1/2), (1/2, 1/2), (1/2, 1/2)), (0, 0), (false, false, false, false), ((0, 1), (1/2, 1/2)))
|
|
315 | 315 | 0.618034 0.786151
|
316 | 316 | 0.786151 -0.618034</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> Fτ'*Fτ</code><code class="nohighlight hljs ansi" style="display:block;">2×2 Matrix{Float64}:
|
317 | 317 | 1.0 0.0
|
318 |
| - 0.0 1.0</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> polar(x) = rationalize.((abs(x), angle(x)/(2pi)))</code><code class="nohighlight hljs ansi" style="display:block;">polar (generic function with 1 method)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> Rsymbol(τ,τ,𝟙) |> polar</code><code class="nohighlight hljs ansi" style="display:block;">(1//1, 2//5)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> Rsymbol(τ,τ,τ) |> polar</code><code class="nohighlight hljs ansi" style="display:block;">(1//1, -3//10)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> twist(τ) |> polar</code><code class="nohighlight hljs ansi" style="display:block;">(1//1, -2//5)</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../spaces/">« Vector spaces</a><a class="docs-footer-nextpage" href="../tensors/">Tensors and the <code>TensorMap</code> type »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.9.0 on <span class="colophon-date" title="Friday 21 March 2025 13:11">Friday 21 March 2025</span>. Using Julia version 1.11.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html> |
| 318 | + 0.0 1.0</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> polar(x) = rationalize.((abs(x), angle(x)/(2pi)))</code><code class="nohighlight hljs ansi" style="display:block;">polar (generic function with 1 method)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> Rsymbol(τ,τ,𝟙) |> polar</code><code class="nohighlight hljs ansi" style="display:block;">(1//1, 2//5)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> Rsymbol(τ,τ,τ) |> polar</code><code class="nohighlight hljs ansi" style="display:block;">(1//1, -3//10)</code><br/><code class="language-julia-repl hljs" style="display:block;">julia> twist(τ) |> polar</code><code class="nohighlight hljs ansi" style="display:block;">(1//1, -2//5)</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../spaces/">« Vector spaces</a><a class="docs-footer-nextpage" href="../tensors/">Tensors and the <code>TensorMap</code> type »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.9.0 on <span class="colophon-date" title="Friday 28 March 2025 00:41">Friday 28 March 2025</span>. Using Julia version 1.11.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html> |
0 commit comments