@@ -5,7 +5,7 @@ function biLanczosIterations(A, stepsize, αs, βs, U, V, μs, νs, τ, reorth_i
5
5
nReorth = 0
6
6
nReorthVecs = 0
7
7
8
- T = eltype (A )
8
+ T = eltype (eltype (U) )
9
9
Tr = real (T)
10
10
11
11
maxνs = Tr[]
112
112
function _tsvd (A,
113
113
nvals = 1 ;
114
114
maxiter = 1000 ,
115
- initvec = convert (Vector{eltype (A)}, randn (size (A,1 ))),
115
+ initvec = convert (Vector{float ( eltype (A) )}, randn (size (A,1 ))),
116
116
tolconv = sqrt (eps (real (eltype (initvec)))),
117
117
tolreorth = sqrt (eps (real (eltype (initvec)))),
118
118
stepsize = max (1 , div (nvals, 10 )),
@@ -330,7 +330,7 @@ julia> s
330
330
tsvd (A,
331
331
nvals = 1 ;
332
332
maxiter = 1000 ,
333
- initvec = convert (Vector{eltype (A)}, randn (size (A,1 ))),
333
+ initvec = convert (Vector{float ( eltype (A) )}, randn (size (A,1 ))),
334
334
tolconv = sqrt (eps (real (eltype (initvec)))),
335
335
tolreorth = sqrt (eps (real (eltype (initvec)))),
336
336
stepsize = max (1 , div (nvals, 10 )),
378
378
379
379
function tsvd2 (A,
380
380
nvals = 1 ;
381
- maxiter = minimum (size (A)),
381
+ maxiter = min (size (A)... ),
382
382
initvec = convert (Vector{eltype (A)}, randn (size (A,2 ))),
383
383
tolconv = sqrt (eps (real (eltype (A)))),
384
384
stepsize = max (1 , div (nvals, 10 )),
0 commit comments