@@ -19,9 +19,9 @@ function LinearAlgebra.ldiv!(H::HessenbergMatrix, B::AbstractVecOrMat)
19
19
lmul! (G, view (Hd, 1 : n, i: n))
20
20
lmul! (G, B)
21
21
end
22
- ldiv! (UpperTriangular (Hd), B)
22
+ LinearAlgebra . ldiv! (UpperTriangular (Hd), B)
23
23
end
24
- ( \ ) (H:: HessenbergMatrix , B:: AbstractVecOrMat ) = ldiv! (copy (H), copy (B))
24
+ LinearAlgebra.: \ (H:: HessenbergMatrix , B:: AbstractVecOrMat ) = LinearAlgebra . ldiv! (copy (H), copy (B))
25
25
26
26
# Hessenberg factorization
27
27
struct HessenbergFactorization{T,S<: StridedMatrix ,U} <: Factorization{T}
32
32
Base. copy (HF:: HessenbergFactorization{T,S,U} ) where {T,S,U} =
33
33
HessenbergFactorization {T,S,U} (copy (HF. data), copy (HF. τ))
34
34
35
- function _hessenberg ! (A:: StridedMatrix{T} ) where {T}
35
+ function hessenberg ! (A:: StridedMatrix{T} ) where {T}
36
36
n = LinearAlgebra. checksquare (A)
37
37
τ = Vector {Householder{T}} (undef, n - 1 )
38
38
for i = 1 : (n- 1 )
@@ -45,7 +45,6 @@ function _hessenberg!(A::StridedMatrix{T}) where {T}
45
45
end
46
46
return HessenbergFactorization {T,typeof(A),eltype(τ)} (A, τ)
47
47
end
48
- hessenberg! (A:: StridedMatrix ) = _hessenberg! (A)
49
48
50
49
Base. size (H:: HessenbergFactorization , args... ) = size (H. data, args... )
51
50
@@ -57,6 +56,8 @@ function Base.getproperty(F::HessenbergFactorization, s::Symbol)
57
56
end
58
57
end
59
58
59
+ Base. propertynames (F:: HessenbergFactorization ) = (fieldnames (typeof (F))... , :H )
60
+
60
61
# Schur
61
62
struct Schur{T,S<: StridedMatrix } <: Factorization{T}
62
63
data:: S
0 commit comments