Skip to content

Commit 40223e0

Browse files
committed
Run the formatter
1 parent 14b509c commit 40223e0

16 files changed

+270
-205
lines changed

.github/workflows/format.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -8,4 +8,4 @@ jobs:
88
steps:
99
- uses: julia-actions/julia-format@v3
1010
with:
11-
version: '1' # Set `version` to '1.0.54' if you need to use JuliaFormatter.jl v1.0.54 (default: '1')
11+
version: '2.1.1'

docs/make.jl

+8-5
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,20 @@
11
using Documenter
22
using GenericLinearAlgebra
33

4-
DocMeta.setdocmeta!(GenericLinearAlgebra, :DocTestSetup, :(using GenericLinearAlgebra, LinearAlgebra); recursive=true)
4+
DocMeta.setdocmeta!(
5+
GenericLinearAlgebra,
6+
:DocTestSetup,
7+
:(using GenericLinearAlgebra, LinearAlgebra);
8+
recursive = true,
9+
)
510

611
makedocs(
712
sitename = "GenericLinearAlgebra",
813
format = Documenter.HTML(),
9-
modules = [GenericLinearAlgebra]
14+
modules = [GenericLinearAlgebra],
1015
)
1116

1217
# Documenter can also automatically deploy documentation to gh-pages.
1318
# See "Hosting Documentation" and deploydocs() in the Documenter manual
1419
# for more information.
15-
deploydocs(
16-
repo = "github.com/JuliaLinearAlgebra/GenericLinearAlgebra.jl.git"
17-
)
20+
deploydocs(repo = "github.com/JuliaLinearAlgebra/GenericLinearAlgebra.jl.git")

src/GenericLinearAlgebra.jl

+28-4
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,35 @@
11
module GenericLinearAlgebra
22

3-
using LinearAlgebra: LinearAlgebra,
4-
Adjoint, Bidiagonal, Diagonal, Factorization, Givens, HermOrSym, Hermitian, I, LowerTriangular,
5-
Rotation, SVD, SymTridiagonal, Symmetric, UnitLowerTriangular, UnitUpperTriangular,
3+
using LinearAlgebra:
4+
LinearAlgebra,
5+
Adjoint,
6+
Bidiagonal,
7+
Diagonal,
8+
Factorization,
9+
Givens,
10+
HermOrSym,
11+
Hermitian,
12+
I,
13+
LowerTriangular,
14+
Rotation,
15+
SVD,
16+
SymTridiagonal,
17+
Symmetric,
18+
UnitLowerTriangular,
19+
UnitUpperTriangular,
620
UpperTriangular,
721
BLAS,
8-
abs2, axpy!, diag, dot, eigencopy_oftype, givens, ishermitian, mul!, rdiv!, tril, triu
22+
abs2,
23+
axpy!,
24+
diag,
25+
dot,
26+
eigencopy_oftype,
27+
givens,
28+
ishermitian,
29+
mul!,
30+
rdiv!,
31+
tril,
32+
triu
933
using LinearAlgebra.BLAS: BlasFloat, BlasReal
1034

1135
include("juliaBLAS.jl")

src/cholesky.jl

+2-2
Original file line numberDiff line numberDiff line change
@@ -42,10 +42,10 @@ function cholRecursive!(A::StridedMatrix{T}, ::Type{Val{:L}}, cutoff = 1) where
4242
n2 = div(n, 2)
4343
A11 = view(A, 1:n2, 1:n2)
4444
cholRecursive!(A11, Val{:L})
45-
A21 = view(A, n2+1:n, 1:n2)
45+
A21 = view(A, (n2+1):n, 1:n2)
4646
rdiv!(A21, LowerTriangular(A11)')
4747

48-
A22 = view(A, n2+1:n, n2+1:n)
48+
A22 = view(A, (n2+1):n, (n2+1):n)
4949
rankUpdate!(Hermitian(A22, :L), A21, -1)
5050
cholRecursive!(A22, Val{:L}, cutoff)
5151
end

src/eigenGeneral.jl

+19-15
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ Base.size(H::HessenbergMatrix, i::Integer) = size(H.data, i)
1414
function LinearAlgebra.ldiv!(H::HessenbergMatrix, B::AbstractVecOrMat)
1515
n = size(H, 1)
1616
Hd = H.data
17-
for i = 1:n-1
17+
for i = 1:(n-1)
1818
G, _ = givens(Hd, i, i + 1, i)
1919
lmul!(G, view(Hd, 1:n, i:n))
2020
lmul!(G, B)
@@ -35,13 +35,13 @@ Base.copy(HF::HessenbergFactorization{T,S,U}) where {T,S,U} =
3535
function _hessenberg!(A::StridedMatrix{T}) where {T}
3636
n = LinearAlgebra.checksquare(A)
3737
τ = Vector{Householder{T}}(undef, n - 1)
38-
for i = 1:n-1
39-
xi = view(A, i+1:n, i)
38+
for i = 1:(n-1)
39+
xi = view(A, (i+1):n, i)
4040
t = LinearAlgebra.reflector!(xi)
41-
H = Householder{T,typeof(xi)}(view(xi, 2:n-i), t)
41+
H = Householder{T,typeof(xi)}(view(xi, 2:(n-i)), t)
4242
τ[i] = H
43-
lmul!(H', view(A, i+1:n, i+1:n))
44-
rmul!(view(A, :, i+1:n), H)
43+
lmul!(H', view(A, (i+1):n, (i+1):n))
44+
rmul!(view(A, :, (i+1):n), H)
4545
end
4646
return HessenbergFactorization{T,typeof(A),eltype(τ)}(A, τ)
4747
end
@@ -96,7 +96,7 @@ function _schur!(
9696
end
9797

9898
# Determine if the matrix splits. Find lowest positioned subdiagonal "zero"
99-
for _istart = iend-1:-1:1
99+
for _istart = (iend-1):-1:1
100100
if abs(HH[_istart+1, _istart]) <=
101101
tol * (abs(HH[_istart, _istart]) + abs(HH[_istart+1, _istart+1]))
102102
# Check if subdiagonal element H[i+1,i] is "zero" such that we can split the matrix
@@ -183,17 +183,17 @@ function singleShiftQR!(
183183
end
184184
G, _ = givens(H11 - shift, H21, istart, istart + 1)
185185
lmul!(G, view(HH, :, istart:m))
186-
rmul!(view(HH, 1:min(istart + 2, iend), :), G')
186+
rmul!(view(HH, 1:min(istart+2, iend), :), G')
187187
lmul!(G, τ)
188-
for i = istart:iend-2
188+
for i = istart:(iend-2)
189189
G, _ = givens(HH[i+1, i], HH[i+2, i], i + 1, i + 2)
190190
lmul!(G, view(HH, :, i:m))
191191
HH[i+2, i] = Htmp
192192
if i < iend - 2
193193
Htmp = HH[i+3, i+1]
194194
HH[i+3, i+1] = 0
195195
end
196-
rmul!(view(HH, 1:min(i + 3, iend), :), G')
196+
rmul!(view(HH, 1:min(i+3, iend), :), G')
197197
# mul!(G, τ)
198198
end
199199
return HH
@@ -231,12 +231,12 @@ function doubleShiftQR!(
231231
vHH = view(HH, :, istart:m)
232232
lmul!(G1, vHH)
233233
lmul!(G2, vHH)
234-
vHH = view(HH, 1:min(istart + 3, m), :)
234+
vHH = view(HH, 1:min(istart+3, m), :)
235235
rmul!(vHH, G1')
236236
rmul!(vHH, G2')
237237
lmul!(G1, τ)
238238
lmul!(G2, τ)
239-
for i = istart:iend-2
239+
for i = istart:(iend-2)
240240
for j = 1:2
241241
if i + j + 1 > iend
242242
break
@@ -254,7 +254,7 @@ function doubleShiftQR!(
254254
Htmp22 = HH[i+4, i+j]
255255
HH[i+4, i+j] = 0
256256
end
257-
rmul!(view(HH, 1:min(i + j + 2, iend), :), G')
257+
rmul!(view(HH, 1:min(i+j+2, iend), :), G')
258258
# mul!(G, τ)
259259
end
260260
end
@@ -333,5 +333,9 @@ function eigen!(
333333
return eigen!(Hermitian(A); sortby)
334334
end
335335

336-
throw(ArgumentError("eigen! for general matrices not yet supported. Consider using schur!"))
337-
end
336+
throw(
337+
ArgumentError(
338+
"eigen! for general matrices not yet supported. Consider using schur!",
339+
),
340+
)
341+
end

0 commit comments

Comments
 (0)