You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/coordinate_systems/xyze.jl
+15-15
Original file line number
Diff line number
Diff line change
@@ -59,7 +59,7 @@ Return the square of the spatial_magnitude of a given four-momentum, i.e. the su
59
59
60
60
!!! example
61
61
62
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `px^2+ py^2 + pz^2`.
62
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `px^2+ py^2 + pz^2`.
63
63
64
64
65
65
!!! warning
@@ -79,7 +79,7 @@ Return the spatial_magnitude of a given four-momentum, i.e. the euklidian norm s
79
79
80
80
!!! example
81
81
82
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `sqrt(px^2 + py^2 + pz^2)`.
82
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `sqrt(px^2 + py^2 + pz^2)`.
83
83
84
84
85
85
!!! warning
@@ -99,7 +99,7 @@ Return the squared invariant mass of a given four-momentum, i.e. the minkowski d
99
99
100
100
!!! example
101
101
102
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `E^2 - (px^2 + py^2 + pz^2)`.
102
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `E^2 - (px^2 + py^2 + pz^2)`.
103
103
104
104
105
105
"""
@@ -115,7 +115,7 @@ Return the the invariant mass of a given four-momentum, i.e. the square root of
115
115
116
116
!!! example
117
117
118
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `sqrt(E^2 - (px^2 + py^2 + pz^2))`.
118
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `sqrt(E^2 - (px^2 + py^2 + pz^2))`.
119
119
120
120
121
121
!!! note
@@ -142,7 +142,7 @@ Return spatial_magnitude of the beta vector for a given four-momentum, i.e. the
142
142
143
143
!!! example
144
144
145
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `sqrt(px^2 + py^2 + pz^2)/E`.
145
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `sqrt(px^2 + py^2 + pz^2)/E`.
146
146
147
147
"""
148
148
@inlinefunctionboost_beta(::XYZE, mom)
@@ -169,7 +169,7 @@ Return the relativistic gamma factor for a given four-momentum, i.e. the inverse
169
169
170
170
!!! example
171
171
172
-
If `(E,px,py,pz)` is a four-momentum with beta vector `β`, this is equivalent to `1/sqrt(1- β^2)`.
172
+
If `(px,py,pz,E)` is a four-momentum with beta vector `β`, this is equivalent to `1/sqrt(1- β^2)`.
173
173
174
174
"""
175
175
@inlinefunctionboost_gamma(::XYZE, mom)
@@ -187,7 +187,7 @@ Return the squared transverse momentum for a given four-momentum, i.e. the sum o
187
187
188
188
!!! example
189
189
190
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `px^2 + py^2`.
190
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `px^2 + py^2`.
191
191
192
192
!!! note
193
193
@@ -206,7 +206,7 @@ Return the transverse momentum for a given four-momentum, i.e. the spatial_magni
206
206
207
207
!!! example
208
208
209
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `sqrt(px^2 + py^2)`.
209
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `sqrt(px^2 + py^2)`.
210
210
211
211
212
212
!!! note
@@ -226,7 +226,7 @@ Return the squared transverse mass for a given four-momentum, i.e. the differenc
226
226
227
227
!!! example
228
228
229
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `E^2 - pz^2`.
229
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `E^2 - pz^2`.
230
230
231
231
232
232
!!! note
@@ -247,7 +247,7 @@ Return the transverse momentum for a given four-momentum, i.e. the square root o
247
247
248
248
!!! example
249
249
250
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `sqrt(E^2 - pz^2)`.
250
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `sqrt(E^2 - pz^2)`.
251
251
252
252
253
253
!!! note
@@ -277,7 +277,7 @@ Return the [rapidity](https://en.wikipedia.org/wiki/Rapidity) for a given four-m
277
277
278
278
!!! example
279
279
280
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `0.5*log((E+pz)/(E-pz))`.
280
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `0.5*log((E+pz)/(E-pz))`.
281
281
282
282
283
283
!!! note
@@ -327,7 +327,7 @@ Return the theta angle for a given four-momentum, i.e. the polar angle of its sp
327
327
328
328
!!! example
329
329
330
-
If `(E,px,py,pz)` is a four-momentum with spatial_magnitude `rho`, this is equivalent to `arccos(pz/rho)`, which is also equivalent to `arctan(sqrt(px^2+py^2)/pz)`.
330
+
If `(px,py,pz,E)` is a four-momentum with spatial_magnitude `rho`, this is equivalent to `arccos(pz/rho)`, which is also equivalent to `arctan(sqrt(px^2+py^2)/pz)`.
331
331
332
332
!!! note
333
333
@@ -370,7 +370,7 @@ Return the phi angle for a given four-momentum, i.e. the azimuthal angle of its
370
370
371
371
!!! example
372
372
373
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `atan(py,px)`.
373
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `atan(py,px)`.
374
374
375
375
!!! note
376
376
@@ -426,7 +426,7 @@ Return the plus component for a given four-momentum in [light-cone coordinates](
426
426
427
427
!!! example
428
428
429
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `(E+pz)/2`.
429
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `(E+pz)/2`.
430
430
431
431
!!! note
432
432
@@ -449,7 +449,7 @@ Return the minus component for a given four-momentum in [light-cone coordinates]
449
449
450
450
!!! example
451
451
452
-
If `(E,px,py,pz)` is a four-momentum, this is equivalent to `(E-pz)/2`.
452
+
If `(px,py,pz,E)` is a four-momentum, this is equivalent to `(E-pz)/2`.
0 commit comments