-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.jl
60 lines (48 loc) · 2.14 KB
/
base.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
@testset verbose = true "base" begin
logger = MLJFlow.Logger(ENV["MLFLOW_TRACKING_URI"];
experiment_name="MLJFlow tests",
artifact_location="/tmp/mlj-test")
X, y = make_moons(100)
DecisionTreeClassifier = @load DecisionTreeClassifier pkg=DecisionTree
pipe = Standardizer() |> DecisionTreeClassifier()
mach = machine(pipe, X, y)
e1 = evaluate!(mach, resampling=CV(),
measures=[LogLoss(), Accuracy()], verbosity=1, logger=logger)
@testset "log_evaluation" begin
experiment = getexperiment(logger.service, logger.experiment_name)
runs = searchruns(logger.service, experiment)
@test typeof(runs[1]) == MLFlowRun
end
@testset "ensuring logging" begin
runs = searchruns(logger.service,
getexperiment(logger.service, logger.experiment_name))
@test issetequal(keys(runs[1].data.params),
String.([keys(MLJModelInterface.flat_params(pipe))...]))
end
@testset "save" begin
run = MLJBase.save(logger, mach)
@test typeof(run) == MLFlowRun
artifacts = listartifacts(logger.service, run)
@test artifacts |> length == 1
loaded_mach = machine(artifacts[1].filepath)
@test loaded_mach.model isa ProbabilisticPipeline
test_x, test_y = make_moons(1)
pred = predict(mach, test_x)[1]
loaded_mach_pred = predict(loaded_mach, test_x)[1]
@test pdf(pred, 0) == pdf(loaded_mach_pred, 0)
@test pdf(pred, 1) == pdf(loaded_mach_pred, 1)
end
@testset "accesor methods" begin
@test MLJFlow.service(logger) isa MLFlow
end
@testset "log_evaluation_with_zero_param_model" begin
zeroparams_machine = machine(ConstantClassifier(), X, y)
e1 = evaluate!(zeroparams_machine, resampling=CV(),
measures=[LogLoss(), Accuracy()], verbosity=1, logger=logger)
runs = searchruns(logger.service,
getexperiment(logger.service, logger.experiment_name))
@test isempty(runs[3].data.params)
end
experiment = getorcreateexperiment(logger.service, logger.experiment_name)
deleteexperiment(logger.service, experiment)
end