-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFirstOrderClassical.agda
619 lines (508 loc) · 27.6 KB
/
FirstOrderClassical.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
{-# OPTIONS --prop --allow-unsolved-metas #-}
open import lib
module FirstOrderClassical
(funar : ℕ → Set)
(relar : ℕ → Set)
where
record Model (i j k l m : Level) : Set (lsuc (i ⊔ j ⊔ k ⊔ l ⊔ m)) where
infixl 5 _▸t _▸p_
infixl 5 _,t_ _,p_
infixr 7 _∘_
infixl 8 _[_]t _[_]ts _[_]F _[_]p
infixr 6 _⊃_
field
-- We translate the Second order example into a first order GAT
-- The main idea of the traslation is to encode the variables
-- that we got from the second order operators for free
-- These variables will be handles via a Cartesian Closed Category
-- The objects are Contexts which will story our variables, and arrows are morphisms between context
-- these are substitutions
-- Cartesian Closed Category
Con : Set i -- Objects
Sub : Con → Con → Set j -- Morphisms/Arrows
_∘_ : ∀{Γ Δ Θ} → Sub Δ Γ → Sub Θ Δ → Sub Θ Γ -- Composition arrows
id : ∀{Γ} → Sub Γ Γ -- Identity arrows
-- Equations
ass : ∀{Γ Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ}{Ξ}{θ : Sub Ξ Θ} → (γ ∘ δ) ∘ θ ≡ γ ∘ (δ ∘ θ)
idl : ∀{Γ Δ}{γ : Sub Δ Γ} → id ∘ γ ≡ γ
idr : ∀{Γ Δ}{γ : Sub Δ Γ} → γ ∘ id ≡ γ
-- Our category comes with a terminal object
◆ : Con
ε : ∀{Γ} → Sub Γ ◆
-- Universal property
◆η : ∀{Γ}(σ : Sub Γ ◆) → σ ≡ ε
-- We then translate each of our sort into a functor from the
-- opposite of the base category (category of contexts (Conᵒᵖ)) to the category of Sets
-- This is also called the presheaf over the base category (PrShf(Con))
-- For : Set
-- The functors action on Objects (Con)
For : Con → Set k
-- The functors action on Arrows (Sub Δ Γ)
_[_]F : ∀{Γ Δ} → For Γ → Sub Δ Γ → For Δ -- Sub Δ Γ → (For Γ → For Δ) == Γ ⇒ Δ → (For Γ )
-- because For is a Functor it must preserve the equations
[∘]F : ∀{Γ}{K : For Γ}{Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ} → K [ γ ∘ δ ]F ≡ K [ γ ]F [ δ ]F
[id]F : ∀{Γ}{K : For Γ} → K [ id ]F ≡ K
-- For Pf, we have additional operations _▸p_ (context extention)
-- Pf : For → Prop
Pf : (Γ : Con) → For Γ → Prop l -- mivel Propba megy ezért nem kellenek a funktor
_[_]p : ∀{Γ K} → Pf Γ K → ∀{Δ} → (γ : Sub Δ Γ) → Pf Δ (K [ γ ]F)
-- this functor is locally representable
_▸p_ : (Γ : Con) → For Γ → Con
_,p_ : ∀{Γ Δ} → (γ : Sub Δ Γ) → ∀{K} → Pf Δ (K [ γ ]F) → Sub Δ (Γ ▸p K)
pp : ∀{Γ K} → Sub (Γ ▸p K) Γ
qp : ∀{Γ K} → Pf (Γ ▸p K) (K [ pp ]F)
▸pβ₁ : ∀{Γ Δ}{γ : Sub Δ Γ}{K}{k : Pf Δ (K [ γ ]F)} → pp ∘ (γ ,p k) ≡ γ
-- β₂ nem kell mert Pf propba van
-- kell η
▸pη : ∀{Γ Δ K}{γp : Sub Δ (Γ ▸p K)} → (pp ∘ γp) ,p substp (λ K → Pf Δ K) (sym [∘]F) (qp [ γp ]p) ≡ γp
-- The second half has to be transported because
-- qp [ γp ]p : Pf Δ (K [ pp ]F [ γp ]F)
-- but we need ? : Pf Δ (K [ pp ∘ γp ]F)
-- propositional connectives (they don't depend on the term context)
-- Then for every operation on For and Pf we can just add them and say how they behave over _[_]
-- ⊥ : For, exfalso : Pf ⊥ → Pf K
⊥ : ∀{Γ} → For Γ
⊥[] : ∀{Γ Δ}{γ : Sub Δ Γ} → ⊥ [ γ ]F ≡ ⊥
exfalso : ∀{Γ K} → Pf Γ ⊥ → Pf Γ K
-- ⊤ : For, tt : Pf ⊤
⊤ : ∀{Γ} → For Γ
⊤[] : ∀{Γ Δ}{γ : Sub Δ Γ} → ⊤ [ γ ]F ≡ ⊤
tt : ∀{Γ} → Pf Γ ⊤
-- ⊃ : For → For → For, (Pf K → Pf L) ↔ Pf (K ⊃ L)
_⊃_ : ∀{Γ} → For Γ → For Γ → For Γ
⊃[] : ∀{Γ K L Δ}{γ : Sub Δ Γ} → (K ⊃ L) [ γ ]F ≡ K [ γ ]F ⊃ L [ γ ]F
⊃intro : ∀{Γ K L} → Pf (Γ ▸p K) (L [ pp ]F) → Pf Γ (K ⊃ L)
⊃elim : ∀{Γ K L} → Pf Γ (K ⊃ L) → Pf (Γ ▸p K) (L [ pp ]F) -- Pf Γ (K ⊃ L) → Pf Γ K → Pf Γ L -- Pf (Γ ▸p K) (L [ pp ]F)
_∧_ : ∀{Γ} → For Γ → For Γ → For Γ
∧[] : ∀{Γ K L Δ}{γ : Sub Δ Γ} → (K ∧ L) [ γ ]F ≡ (K [ γ ]F) ∧ (L [ γ ]F)
∧intro : ∀{Γ}{K L} → Pf Γ K → Pf Γ L → Pf Γ (K ∧ L)
∧elim₁ : ∀{Γ}{K L} → Pf Γ (K ∧ L) → Pf Γ K
∧elim₂ : ∀{Γ}{K L} → Pf Γ (K ∧ L) → Pf Γ L
_∨_ : ∀{Γ} → For Γ → For Γ → For Γ
∨[] : ∀{Γ K L Δ}{γ : Sub Δ Γ} → (K ∨ L) [ γ ]F ≡ (K [ γ ]F) ∨ (L [ γ ]F)
∨elim : ∀{Γ}{K L C} → Pf (Γ ▸p K) (C [ pp ]F) → Pf (Γ ▸p L) (C [ pp ]F) → Pf Γ (K ∨ L) → Pf Γ C
∨intro₁ : ∀{Γ}{K L} → Pf Γ K → Pf Γ (K ∨ L)
∨intro₂ : ∀{Γ}{K L} → Pf Γ L → Pf Γ (K ∨ L)
-- terms (Tm : Set)
Tm : Con → Set j
_[_]t : ∀{Γ} → Tm Γ → ∀{Δ} → Sub Δ Γ → Tm Δ
[∘]t : ∀{Γ}{t : Tm Γ}{Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ} → t [ γ ∘ δ ]t ≡ t [ γ ]t [ δ ]t
[id]t : ∀{Γ}{t : Tm Γ} → t [ id ]t ≡ t
_▸t : Con → Con
_,t_ : ∀{Γ Δ} → Sub Δ Γ → Tm Δ → Sub Δ (Γ ▸t)
pt : ∀{Γ} → Sub (Γ ▸t) Γ
qt : ∀{Γ} → Tm (Γ ▸t)
▸tβ₁ : ∀{Γ Δ}{γ : Sub Δ Γ}{t : Tm Δ} → (pt ∘ (γ ,t t)) ≡ γ
▸tβ₂ : ∀{Γ Δ}{γ : Sub Δ Γ}{t : Tm Δ} → (qt [ γ ,t t ]t) ≡ t
▸tη : ∀{Γ Δ}{γt : Sub Δ (Γ ▸t)} → ((pt ∘ γt) ,t (qt [ γt ]t)) ≡ γt
-- Telescopes of terms
-- They are basically isomorphic to Vectors of Tm-s
-- Why do we nned them? Its more principled to build these into the theory rather then relaying on out metatheorys Vectors
-- We only rely on natural numbers from our metatheory
-- It is also a contravariant functor from Con
Tms : Con → ℕ → Set m
-- Action on morphisms
_[_]ts : ∀{Γ n} → Tms Γ n → ∀{Δ} → Sub Δ Γ → Tms Δ n
-- Functor laws
[∘]ts : ∀{Γ n}{ts : Tms Γ n}{Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ} → ts [ γ ∘ δ ]ts ≡ ts [ γ ]ts [ δ ]ts
[id]ts : ∀{Γ n}{ts : Tms Γ n} → ts [ id ]ts ≡ ts
εs : ∀{Γ} → Tms Γ zero
◆sη : ∀{Γ}(ts : Tms Γ zero) → ts ≡ εs
_,s_ : ∀{Γ n} → Tms Γ n → Tm Γ → Tms Γ (suc n)
π₁ : ∀{Γ n} → Tms Γ (suc n) → Tms Γ n
π₂ : ∀{Γ n} → Tms Γ (suc n) → Tm Γ
▸sβ₁ : ∀{Γ n}{ts : Tms Γ n}{t : Tm Γ} → π₁ (ts ,s t) ≡ ts
▸sβ₂ : ∀{Γ n}{ts : Tms Γ n}{t : Tm Γ} → π₂ (ts ,s t) ≡ t
▸sη : ∀{Γ n}{ts : Tms Γ (suc n)} → π₁ ts ,s π₂ ts ≡ ts
,[] : ∀{Γ n}{ts : Tms Γ n}{t : Tm Γ}{Δ}{γ : Sub Δ Γ} → (ts ,s t) [ γ ]ts ≡ (ts [ γ ]ts) ,s (t [ γ ]t)
fun : ∀{Γ}(n : ℕ) → funar n → Tms Γ n → Tm Γ
fun[] : ∀{Γ n a ts Δ}{γ : Sub Δ Γ} → (fun n a ts [ γ ]t) ≡ fun n a (ts [ γ ]ts)
rel : ∀{Γ}(n : ℕ) → relar n → Tms Γ n → For Γ
rel[] : ∀{Γ n a ts Δ}{γ : Sub Δ Γ} → ((rel n a ts) [ γ ]F) ≡ rel n a (ts [ γ ]ts)
-- first order connectives
-- ∀ : (Tm → For) → For, ((t : Tm) → Pf (K t)) ↔ Pf (∀ K)
∀' : ∀{Γ} → For (Γ ▸t) → For Γ
∀[] : ∀{Γ K Δ}{γ : Sub Δ Γ} → (∀' K) [ γ ]F ≡ ∀' (K [ (γ ∘ pt) ,t qt ]F)
∀intro : ∀{Γ K} → Pf (Γ ▸t) K → Pf Γ (∀' K)
∀elim : ∀{Γ K} → Pf Γ (∀' K) → Pf (Γ ▸t) K
∃' : ∀{Γ} → For (Γ ▸t) → For Γ
∃[] : ∀{Γ K Δ}{γ : Sub Δ Γ} → (∃' K) [ γ ]F ≡ ∃' (K [ (γ ∘ pt) ,t qt ]F)
∃intro : ∀{Γ K} → (t : Tm Γ) → Pf Γ (K [ id ,t t ]F) → Pf Γ (∃' K)
--∃intro : ∀{Γ K} → (∃ (Tm Γ) (λ t → Pf Γ (K [ id ,t t ]F))) → Pf Γ (∃' K)
∃elim : ∀{Γ K L} → Pf Γ (∃' K) → Pf ((Γ ▸t) ▸p K) (L [ pt ∘ pp ]F) → Pf Γ L
-- Eq : Tm → Tm → For, ref : (t : Tm) → Eq t t, subst : (K : Tm → For) → Pf (Eq t t') → Pf (K t) → Pf (K t')
Eq : ∀{Γ} → Tm Γ → Tm Γ → For Γ
Eq[] : ∀{Γ Δ}{γ : Sub Δ Γ}{t t' : Tm Γ} → (Eq t t') [ γ ]F ≡ Eq (t [ γ ]t) (t' [ γ ]t)
Eqrefl : ∀{Γ}{t : Tm Γ} → Pf Γ (Eq t t)
subst' : ∀{Γ}(K : For (Γ ▸t)){t t' : Tm Γ} → Pf Γ (Eq t t') → Pf Γ (K [ id ,t t ]F) → Pf Γ (K [ id ,t t' ]F)
dne : ∀{Γ A} → Pf Γ (((A ⊃ ⊥) ⊃ ⊥) ⊃ A)
,∘ : ∀{Γ Δ}{γ : Sub Δ Γ}{t : Tm Δ}{Θ}{δ : Sub Θ Δ} → (γ ,t t) ∘ δ ≡ γ ∘ δ ,t t [ δ ]t
,∘ {Γ}{Δ}{γ}{t}{Θ}{δ} = trans (sym ▸tη) (cong (λ z → proj₁ z ,t proj₂ z) (mk,= (trans (sym ass) (cong (_∘ δ) ▸tβ₁)) (trans [∘]t (cong (_[ δ ]t) ▸tβ₂))))
▸tη' : ∀{Γ} → id {Γ ▸t} ≡ pt ,t qt
▸tη' {Γ} = trans (sym ▸tη) (cong (λ z → proj₁ z ,t proj₂ z) (mk,= idr [id]t))
_$_ : ∀{Γ K L} → Pf Γ (K ⊃ L) → Pf Γ K → Pf Γ L
_$_ {Γ}{K}{L} m k = substp (Pf Γ) (trans (sym [∘]F) (trans (cong (L [_]F) ▸pβ₁) [id]F)) (⊃elim m [ id ,p substp (Pf Γ) (sym [id]F) k ]p)
un∀' : ∀{Γ K} → Pf Γ (∀' K) → (t : Tm Γ) → Pf Γ (K [ id ,t t ]F)
un∀' {Γ}{K} k t = (∀elim k) [ id ,t t ]p
pp⁺ : ∀{Γ Δ}{K} → (γ : Sub Γ Δ) → Sub (Γ ▸p K [ γ ]F) (Δ ▸p K)
pp⁺ {Γ}{Δ}{K} γ = (γ ∘ pp) ,p substp (Pf (Γ ▸p K [ γ ]F)) (sym [∘]F) qp
pt⁺ : ∀{Γ Δ} → (γ : Sub Γ Δ) → Sub (Γ ▸t) (Δ ▸t)
pt⁺ γ = (γ ∘ pt) ,t qt
-- We give the initial model of FOLClassicMinimal
-- We give it as a normal form, meaning its a inductive
-- datatype but we can prove it satisfies the equations
module I where
infixl 5 _▸t _▸p_
infixl 5 _,t_ _,p_
infixr 7 _∘_ _∘p_
infixl 8 _[_]t _[_]F _[_]C _[_]P _[_]p _[_]v _[_]s _[_]ts
infixr 6 _⊃_
infixr 7 _∧_
infixl 6 _$_
-- We give the context in two different parts, a context of Tm-s and a context of Pf variable
-- Then out context will be Con = Σ ConTm ConPf
-- Along the way we prove all the ass,id, and β,η laws
-- Contexts for terms
-- ConTm ≅ ℕ
data ConTm : Set where
◆t : ConTm
_▸t : ConTm → ConTm
module V where
--De Bruijn indicies
data Tm : ConTm → Set where
vz : ∀{Γ} → Tm (Γ ▸t)
vs : ∀{Γ} → Tm Γ → Tm (Γ ▸t)
-- Renaming
data Sub : ConTm → ConTm → Set where
εt : ∀{Δt} → Sub Δt ◆t
_,t_ : ∀{Γt Δt} → Sub Δt Γt → Tm Δt → Sub Δt (Γt ▸t)
mk,t= : ∀{Γ Δ t t'}{γ γ' : Sub Δ Γ} → γ ≡ γ' → t ≡ t' → γ ,t t ≡ γ' ,t t'
mk,t= refl refl = refl
-- Substitution on terms (Action on morphisms)
_[_] : ∀{Γ} → Tm Γ → ∀{Δ} → Sub Δ Γ → Tm Δ
vz [ γ ,t t ] = t
vs t [ γ ,t _ ] = t [ γ ]
_∘_ : ∀{Γ Δ} → Sub Δ Γ → ∀{Θ} → Sub Θ Δ → Sub Θ Γ
εt ∘ γ = εt
(γ ,t t) ∘ δ = (γ ∘ δ) ,t (t [ δ ])
[∘] : ∀{Γ}{t : Tm Γ}{Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ} → t [ γ ∘ δ ] ≡ t [ γ ] [ δ ]
[∘] {t = vz} {γ = γ ,t x} = refl
[∘] {t = vs t} {γ = γ ,t x} = [∘] {t = t}
-- Pattern match on Subs
ass : ∀{Γ Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ}{Ξ}{θ : Sub Ξ Θ} → (γ ∘ δ) ∘ θ ≡ γ ∘ (δ ∘ θ)
ass {γ = εt} = refl
ass {γ = γ ,t x} = mk,t= ass (sym ([∘] {t = x}))
wk : ∀{Γ Δ} → Sub Δ Γ → Sub (Δ ▸t) Γ
wk εt = εt
wk (γ ,t t) = wk γ ,t vs t
id : ∀{Γ} → Sub Γ Γ
id {◆t} = εt
id {Γ ▸t} = (wk id) ,t vz
wk∘ : ∀{Γ Δ}{γ : Sub Δ Γ}{Θ}{δ : Sub Θ Δ}{t : Tm Θ} → (wk γ ∘ (δ ,t t)) ≡ γ ∘ δ
wk∘ {γ = εt} = refl
wk∘ {γ = γ ,t x} {δ = δ} = cong (_,t (x [ δ ])) wk∘
idl : ∀{Γ Δ}{γ : Sub Δ Γ} → id ∘ γ ≡ γ
idl {γ = εt} = refl
idl {γ = γ ,t x} = cong (_,t x) (trans wk∘ idl)
vs[] : ∀{Γ}{t : Tm Γ}{Δ}{γ : Sub Δ Γ} → t [ wk γ ] ≡ vs (t [ γ ])
vs[] {t = vz} {γ = γ ,t t} = refl
vs[] {t = vs t} {γ = γ ,t t'} = vs[] {t = t}
[id] : ∀{Γ}{t : Tm Γ} → t [ id ] ≡ t
[id] {t = vz} = refl
[id] {t = vs t} = trans (vs[] {t = t}) (cong vs ([id] {t = t}))
idr : ∀{Γ Δ}{γ : Sub Δ Γ} → γ ∘ id ≡ γ
idr {γ = εt} = refl
idr {γ = γ ,t x} = mk,t= idr [id]
open V using (vz; vs)
-- Because we use Tms in our notion of model we have to define Tms and Tm mutually inductively
-- This is one of the "negatives" of using Tms but this is also the case for substitutions in Tm and Tm ^ n
data Tm (Γt : ConTm) : Set
Tms : ConTm → ℕ → Set
data Tm Γt where
var : V.Tm Γt → Tm Γt
fun : (n : ℕ) → funar n → Tms Γt n → Tm Γt
Tms Γt zero = 𝟙
Tms Γt (suc n) = Tms Γt n × Tm Γt
--data Tm (Γt : ConTm) : Set where
-- var : V.Tm Γt → Tm Γt
-- fun : (n : ℕ) → funar n → Tm Γt ^ n → Tm Γt
data Subt : ConTm → ConTm → Set where
εt : ∀{Δt} → Subt Δt ◆t
_,t_ : ∀{Γt Δt} → Subt Δt Γt → Tm Δt → Subt Δt (Γt ▸t)
mk,t= : ∀{Γ Δ t t'}{γ γ' : Subt Δ Γ} → γ ≡ γ' → t ≡ t' → γ ,t t ≡ γ' ,t t'
mk,t= refl refl = refl
-- Substitution on variables
_[_]v : ∀{Γt Δt} → V.Tm Γt → Subt Δt Γt → Tm Δt
vz [ γ ,t t ]v = t
vs x [ γ ,t t ]v = x [ γ ]v
-- Substitution on terms and Tm ^ n
--_[_]ts : ∀{Γt n} → Tm Γt ^ n → ∀{Δt} → Subt Δt Γt → Tm Δt ^ n
--_[_]t : ∀{Γt} → Tm Γt → ∀{Δt} → Subt Δt Γt → Tm Δt
--_[_]ts {n = zero} _ _ = *
--_[_]ts {n = suc n} (t ,Σ ts) γ = (t [ γ ]t) ,Σ (ts [ γ ]ts)
--var x [ γ ]t = x [ γ ]v
--(fun n a ts) [ γ ]t = fun n a (ts [ γ ]ts)
-- Substitution on terms
_[_]t : ∀{Γt} → Tm Γt → ∀{Δt} → Subt Δt Γt → Tm Δt
_[_]ts : ∀{Γt n} → Tms Γt n → ∀{Δt} → Subt Δt Γt → Tms Δt n
var x [ γ ]t = x [ γ ]v
fun n a ts [ γ ]t = fun n a (ts [ γ ]ts)
_[_]ts {n = zero} _ _ = *
_[_]ts {n = suc n} (ts ,Σ t) γ = ts [ γ ]ts ,Σ t [ γ ]t
_∘t_ : ∀{Γt Δt} → Subt Δt Γt → ∀{Θt} → Subt Θt Δt → Subt Θt Γt
εt ∘t _ = εt
(γ ,t t) ∘t δ = (γ ∘t δ) ,t (t [ δ ]t)
[∘]v : ∀{Γt}{x : V.Tm Γt}{Δt}{γ : Subt Δt Γt}{Θt}{δ : Subt Θt Δt} → x [ γ ∘t δ ]v ≡ x [ γ ]v [ δ ]t
[∘]v {x = vz} {γ = γ ,t x} = refl
[∘]v {x = vs x} {γ = γ ,t t} = [∘]v {x = x}
[∘]t : ∀{Γt}{t : Tm Γt}{Δt}{γ : Subt Δt Γt}{Θt}{δ : Subt Θt Δt} → t [ γ ∘t δ ]t ≡ t [ γ ]t [ δ ]t
[∘]ts : ∀{Γt n}{ts : Tms Γt n}{Δt}{γ : Subt Δt Γt}{Θt}{δ : Subt Θt Δt} → ts [ γ ∘t δ ]ts ≡ ts [ γ ]ts [ δ ]ts
[∘]t {Γt} {var x} {Δt} {γ} {Θt} {δ} = [∘]v {x = x}
[∘]t {Γt} {fun n a ts} {Δt} {γ} {Θt} {δ} = cong (fun n a) [∘]ts
[∘]ts {Γt} {zero} {ts} {Δt} {γ} {Θt} {δ} = refl
[∘]ts {Γt} {suc n} {ts = t ,Σ ts} {Δt} {γ} {Θt} {δ} = mk,= ([∘]ts {ts = t}) ([∘]t {t = ts})
ass : ∀{Γt Δt}{γ : Subt Δt Γt}{Θt}{δ : Subt Θt Δt}{Ξt}{θ : Subt Ξt Θt} → (γ ∘t δ) ∘t θ ≡ γ ∘t (δ ∘t θ)
ass {γ = εt} = refl
ass {γ = γ ,t x} = mk,t= ass (sym ([∘]t {t = x}))
⌜_⌝ : ∀{Γt Δt} → V.Sub Δt Γt → Subt Δt Γt
⌜ V.εt ⌝ = εt
⌜ γ V.,t t ⌝ = ⌜ γ ⌝ ,t (var t)
idt : ∀{Γt} → Subt Γt Γt
idt = ⌜ V.id ⌝
⌜wk⌝∘ : ∀{Γt Δt}{γv : V.Sub Δt Γt}{Θt}{δ : Subt Θt Δt}{t : Tm Θt} → ⌜ V.wk γv ⌝ ∘t (δ ,t t) ≡ ⌜ γv ⌝ ∘t δ
⌜wk⌝∘ {γv = V.εt} = refl
⌜wk⌝∘ {γv = γv V.,t x} {δ = δ} = cong (_,t (x [ δ ]v)) ⌜wk⌝∘
idl : ∀{Γt Δt}{γ : Subt Δt Γt} → idt ∘t γ ≡ γ
idl {γ = εt} = refl
idl {γ = γ ,t t} = cong (_,t t) (trans ⌜wk⌝∘ idl)
[⌜⌝] : ∀{Γt}{x : V.Tm Γt}{Δt}{γv : V.Sub Δt Γt} → x [ ⌜ γv ⌝ ]v ≡ var (x V.[ γv ])
[⌜⌝] {x = vz} {γv = γv V.,t t} = refl
[⌜⌝] {x = vs x} {γv = γv V.,t t} = [⌜⌝] {x = x}
[id]v : ∀{Γt}{x : V.Tm Γt} → x [ idt ]v ≡ var x
[id]v {x = vz} = refl
[id]v {x = vs x} = trans ((trans ([⌜⌝] {x = x}) (cong var (V.vs[] {t = x}{γ = V.id})))) (cong (λ z → var (vs z)) V.[id])
[id]t : ∀{Γt}{t : Tm Γt} → t [ idt ]t ≡ t
[id]ts : ∀{Γt n}{ts : Tms Γt n} → (ts [ idt ]ts) ≡ ts
[id]t {t = var x} = [id]v
[id]t {t = fun n a ts} = cong (fun n a) ([id]ts {ts = ts})
[id]ts {n = zero} = refl
[id]ts {n = suc n}{ts = t ,Σ ts} = mk,= [id]ts [id]t
idr : ∀{Γt Δt}{γ : Subt Δt Γt} → γ ∘t idt ≡ γ
idr {γ = εt} = refl
idr {γ = γ ,t t} = mk,t= idr [id]t
pt : ∀{Γt} → Subt (Γt ▸t) Γt
pt {Γt} = ⌜ V.wk V.id ⌝
qt : ∀{Γt} → Tm (Γt ▸t)
qt = var V.vz
▸tβ₁ : ∀{Γt Δt}{γ : Subt Δt Γt}{t : Tm Δt} → (pt ∘t (γ ,t t)) ≡ γ
▸tβ₁ = trans ⌜wk⌝∘ idl
▸tβ₂ : ∀{Γ Δ}{γ : Subt Δ Γ}{t : Tm Δ} → (qt [ γ ,t t ]t) ≡ t
▸tβ₂ = refl
▸tη : ∀{Γt Δt}{γt : Subt Δt (Γt ▸t)} → ((pt ∘t γt) ,t (qt [ γt ]t)) ≡ γt
▸tη {γt = γ ,t t} = cong (_,t t) (trans (⌜wk⌝∘ {γv = V.id}) idl)
-- Formulas
data For (Γt : ConTm) : Set where
⊥ : For Γt
⊤ : For Γt
_⊃_ : For Γt → For Γt → For Γt
_∧_ : For Γt → For Γt → For Γt
_∨_ : For Γt → For Γt → For Γt
∀' : For (Γt ▸t) → For Γt
∃' : For (Γt ▸t) → For Γt
Eq : Tm Γt → Tm Γt → For Γt
rel : (n : ℕ) → relar n → Tms Γt n → For Γt
¬_ : ∀{Γt} → For Γt → For Γt
¬ A = A ⊃ ⊥
_[_]F : ∀{Γt Δt} → For Γt → Subt Δt Γt → For Δt
⊥ [ γ ]F = ⊥
⊤ [ γ ]F = ⊤
(K ⊃ L) [ γ ]F = K [ γ ]F ⊃ L [ γ ]F
(K ∧ L) [ γ ]F = K [ γ ]F ∧ L [ γ ]F
(K ∨ L) [ γ ]F = (K [ γ ]F) ∨ (L [ γ ]F)
(∃' K) [ γ ]F = ∃' (K [ (γ ∘t pt) ,t qt ]F)
∀' K [ γ ]F = ∀' (K [ γ ∘t pt ,t qt ]F)
Eq t t' [ γ ]F = Eq (t [ γ ]t) (t' [ γ ]t)
rel n a ts [ γ ]F = rel n a (ts [ γ ]ts)
[∘]F : ∀{Γt}{K : For Γt}{Δt}{γ : Subt Δt Γt}{Θt}{δ : Subt Θt Δt} → K [ γ ∘t δ ]F ≡ K [ γ ]F [ δ ]F
[∘]F {K = ⊥} = refl
[∘]F {K = ⊤} = refl
[∘]F {K = K ⊃ L} = cong (λ z → proj₁ z ⊃ proj₂ z) (mk,= [∘]F [∘]F)
[∘]F {K = K ∧ L} = cong (λ z → proj₁ z ∧ proj₂ z) (mk,= [∘]F [∘]F)
[∘]F {K = K ∨ L} = cong (λ z → proj₁ z ∨ proj₂ z) (mk,= [∘]F [∘]F)
[∘]F {K = ∀' K}{γ = γ}{δ = δ} = cong ∀' (trans (cong (K [_]F) (cong (_,t var vz) (trans (trans ass (cong (γ ∘t_) (sym (▸tβ₁ {γ = δ ∘t pt})))) (sym ass)))) [∘]F)
[∘]F {K = ∃' K}{γ = γ}{δ = δ} = cong ∃' (trans (cong (K [_]F) (cong (_,t var vz) (trans (trans ass (cong (γ ∘t_) (sym (▸tβ₁ {γ = δ ∘t pt})))) (sym ass)))) [∘]F)
[∘]F {K = Eq t t'} = cong (λ z → Eq (proj₁ z) (proj₂ z)) (mk,= ([∘]t {t = t}) ([∘]t {t = t'}))
[∘]F {K = rel n a ts} = cong (rel n a) ([∘]ts {ts = ts})
[id]F : ∀{Γt}{K : For Γt} → K [ idt ]F ≡ K
[id]F {K = ⊥} = refl
[id]F {K = ⊤} = refl
[id]F {K = K ⊃ L} = cong (λ z → proj₁ z ⊃ proj₂ z) (mk,= ([id]F {K = K}) ([id]F {K = L}))
[id]F {K = K ∧ L} = cong (λ z → proj₁ z ∧ proj₂ z) (mk,= ([id]F {K = K}) ([id]F {K = L}))
[id]F {K = K ∨ L} = cong (λ z → proj₁ z ∨ proj₂ z) (mk,= ([id]F {K = K}) ([id]F {K = L}))
[id]F {K = ∀' K} = cong ∀' (trans (cong (K [_]F) (cong (_,t var vz) idl)) ([id]F {K = K}))
[id]F {K = ∃' K} = cong ∃' (trans (cong (K [_]F) (cong (_,t var vz) idl)) ([id]F {K = K}))
[id]F {K = Eq t t'} = cong (λ z → Eq (proj₁ z) (proj₂ z)) (mk,= ([id]t {t = t}) ([id]t {t = t'}))
[id]F {K = rel n a ts} = cong (rel n a) ([id]ts {ts = ts})
data ConPf (Γt : ConTm) : Set where
◆p : ConPf Γt
_▸p_ : ConPf Γt → For Γt → ConPf Γt
_[_]C : ∀{Γt} → ConPf Γt → ∀{Δt} → Subt Δt Γt → ConPf Δt
◆p [ γ ]C = ◆p
(Γp ▸p K) [ γ ]C = Γp [ γ ]C ▸p K [ γ ]F
[∘]C : ∀{Γt}{Γp : ConPf Γt}{Δt}{γ : Subt Δt Γt}{Θt}{δ : Subt Θt Δt} → Γp [ γ ∘t δ ]C ≡ Γp [ γ ]C [ δ ]C
[∘]C {Γp = ◆p} = refl
[∘]C {Γp = Γp ▸p K} = cong (λ z → proj₁ z ▸p proj₂ z) (mk,= ([∘]C {Γp = Γp}) ([∘]F {K = K}))
[id]C : ∀{Γt}{Γp : ConPf Γt} → Γp [ idt ]C ≡ Γp
[id]C {Γp = ◆p} = refl
[id]C {Γp = Γp ▸p K} = cong (λ z → proj₁ z ▸p proj₂ z) (mk,= ([id]C {Γp = Γp}) ([id]F {K = K}))
data Pf : {Γt : ConTm} → ConPf Γt → For Γt → Prop
data Subp : {Γt : ConTm} → ConPf Γt → ConPf Γt → Prop where
εp : ∀{Γt}{Γp : ConPf Γt} → Subp Γp ◆p
idp : ∀{Γt}{Γp : ConPf Γt} → Subp Γp Γp
_∘p_ : ∀{Γt}{Γp Γp' Γp'' : ConPf Γt} → Subp Γp' Γp → Subp Γp'' Γp' → Subp Γp'' Γp
pp : ∀{Γt}{Γp : ConPf Γt}{K} → Subp (Γp ▸p K) Γp
_,p_ : ∀{Γt}{Γp Γp' : ConPf Γt}{K} → Subp Γp' Γp → Pf Γp' K → Subp Γp' (Γp ▸p K)
_[_]s : ∀{Γt}{Δt}{Γp Γp' : ConPf Γt} → Subp Γp' Γp → (γ : Subt Δt Γt) → Subp (Γp' [ γ ]C) (Γp [ γ ]C)
data Pf where
exfalso : ∀{Γt}{Γp : ConPf Γt}{K} → Pf Γp ⊥ → Pf Γp K
tt : ∀{Γt}{Γp : ConPf Γt} → Pf Γp ⊤
⊃intro : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf (Γp ▸p K) L → Pf Γp (K ⊃ L)
_$_ : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf Γp (K ⊃ L) → Pf Γp K → Pf Γp L
∧intro : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf Γp K → Pf Γp L → Pf Γp (K ∧ L)
∧elim₁ : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf Γp (K ∧ L) → Pf Γp K
∧elim₂ : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf Γp (K ∧ L) → Pf Γp L
∨elim : ∀{Γt}{K L C}{Γp : ConPf Γt} → Pf (Γp ▸p K) C → Pf (Γp ▸p L) C → Pf Γp (K ∨ L) → Pf Γp C
∨intro₁ : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf Γp K → Pf Γp (K ∨ L)
∨intro₂ : ∀{Γt}{K L}{Γp : ConPf Γt} → Pf Γp L → Pf Γp (K ∨ L)
∀intro : ∀{Γt}{K Γp} → Pf {Γt ▸t} (Γp [ pt ]C) K → Pf {Γt} Γp (∀' K)
un∀ : ∀{Γt}{K Γp} → Pf Γp (∀' K) → (t : Tm Γt) → Pf Γp (K [ idt ,t t ]F)
∃intro : ∀{Γt K}{Γp : ConPf Γt} → (t : Tm Γt) → Pf Γp (K [ idt ,t t ]F) → Pf Γp (∃' K)
∃elim : ∀{Γt K L}{Γp : ConPf Γt}{Γp' : ConPf (Γt ▸t)} → Pf Γp (∃' K) → Pf (Γp' ▸p K) (L [ pt ]F) → Pf Γp L
ref : ∀{Γt}{a}{Γp : ConPf Γt} → Pf Γp (Eq a a)
subst' : ∀{Γt}(K : For (Γt ▸t)){t t' : Tm Γt}{Γp} → Pf Γp (Eq t t') → Pf Γp (K [ idt ,t t ]F) → Pf Γp (K [ idt ,t t' ]F)
_[_]P : ∀{Γt}{K}{Γp : ConPf Γt} → Pf Γp K → ∀{Δt : ConTm} → (γ : Subt Δt Γt) → Pf (Γp [ γ ]C) (K [ γ ]F)
_[_]p : ∀{Γt}{Γp : ConPf Γt}{K : For Γt} → Pf Γp K → ∀{Γp'} → Subp Γp' Γp → Pf Γp' K
qp : ∀{Γt}{Γp : ConPf Γt}{K : For Γt} → Pf (Γp ▸p K) K
dne : ∀{Γt}{Γp : ConPf Γt}{K : For Γt} → Pf Γp (((K ⊃ ⊥) ⊃ ⊥) ⊃ K)
⊃elim : ∀{Γ K L}{Γp : ConPf Γ} → Pf Γp (K ⊃ L) → Pf (Γp ▸p K) L
⊃elim m = (m [ pp ]p) $ qp
∀elim : ∀{Γ K Γp} → Pf {Γ} Γp (∀' K) → Pf {Γ ▸t} (Γp [ pt ]C) K
∀elim {K = K}{Γp} k = substp (Pf (Γp [ pt ]C))
(trans (trans (sym [∘]F) (cong (λ z → K [ z ,t var vz ]F) (trans ass (trans (cong (pt ∘t_) ▸tβ₁) idr)))) [id]F)
(un∀ (k [ pt ]P) (var vz))
Con : Set
Con = Σ ConTm ConPf
Sub : Con → Con → Set
Sub (Δt ,Σ Δp) (Γt ,Σ Γp) = Σsp (Subt Δt Γt) λ γt → Subp Δp (Γp [ γt ]C)
_∘_ : {Γ Δ Θ : Con} → Sub Δ Γ → Sub Θ Δ → Sub Θ Γ
(γt ,Σ γp) ∘ (δt ,Σ δp) = (γt ∘t δt) ,Σ substp (Subp _) (sym [∘]C) (γp [ δt ]s ∘p δp)
id : {Γ : Con} → Sub Γ Γ
id {Γt ,Σ Γp} = idt ,Σ substp (Subp Γp) (sym [id]C) idp
◆ : Con
◆ = ◆t ,Σ ◆p
ε : {Γ : Con} → Sub Γ ◆
ε {Γt ,Σ Γp} = εt ,Σ εp
◆η : {Γ : Con} (σ : Sub Γ ◆) → σ ≡ ε {Γ}
◆η {Γt ,Σ Γp} (εt ,Σ _) = refl
-- We give db indexes in the syntax
db0 : ∀{Γt Γp K} → Pf {Γt} (Γp ▸p K) K
db0 = qp
db1 : ∀{Γt Γp K L} → Pf {Γt} (Γp ▸p K ▸p L) K
db1 = qp [ pp ]p
db2 : ∀{Γt Γp K L M} → Pf {Γt} (Γp ▸p K ▸p L ▸p M) K
db2 = (qp [ pp ]p) [ pp ]p
-- We prove that ¬¬_ is a monad
join¬¬ : ∀{Γt Γp}{K} → Pf {Γt} Γp (¬ ¬ (¬ ¬ K)) → Pf {Γt} Γp (¬ ¬ K)
join¬¬ x = ⊃intro ((x [ pp ]p) $ (⊃intro (db0 $ db1)))
pp⁺ : ∀{Γt}{Γp Δp}{K} → (γ : Subp {Γt} Γp Δp) → Subp {Γt} (Γp ▸p K) (Δp ▸p K)
pp⁺ γ = (γ ∘p pp) ,p qp
pt⁺ : ∀{Γt Δt} → (γ : Subt Γt Δt) → Subt (Γt ▸t) (Δt ▸t)
pt⁺ γ = (γ ∘t pt) ,t qt
IM : Model _ _ _ _ _
IM = record
{ Con = Con
; Sub = Sub
; _∘_ = _∘_
; id = id
; ass = mk,sp= ass
; idl = mk,sp= idl
; idr = mk,sp= idr
; ◆ = ◆
; ε = ε
; ◆η = ◆η
; For = λ (Γt ,Σ Γp) → For Γt
; _[_]F = λ K (γt ,Σ γp) → K [ γt ]F
; [∘]F = [∘]F
; [id]F = [id]F
; Pf = λ (Γt ,Σ Γp) K → Pf {Γt} Γp K
; _[_]p = λ Pk (γt ,Σ γp) → (Pk [ γt ]P) [ γp ]p
; _▸p_ = λ (Γt ,Σ Γp) K → (Γt ,Σ (Γp ▸p K))
; _,p_ = λ (Γt ,Σ Γp) Pk → Γt ,Σ (Γp ,p Pk)
; pp = λ {Γ@(Γt ,Σ Γp)} {K} → (proj₁ (id {Γ})) ,Σ substp (λ x → Subp (Γp ▸p K) x) (sym [id]C) (pp {Γt} {Γp} {K})
; qp = λ {Γ@(Γt ,Σ Γp)} {K} → substp (λ x → Pf (Γp ▸p K) x) (sym [id]F) (qp {Γt} {Γp} {K})
; ▸pβ₁ = mk,sp= idl
; ▸pη = mk,sp= idl
; ⊥ = ⊥
; ⊥[] = refl
; exfalso = exfalso
; ⊤ = ⊤
; ⊤[] = refl
; tt = tt
; _⊃_ = _⊃_
; ⊃[] = refl
; ⊃intro = λ {Γ}{K} x → substp (Pf (proj₂ Γ)) (cong (K ⊃_) [id]F) (⊃intro x)
; ⊃elim = λ {Γ}{K}{L} pf → substp (Pf (proj₂ Γ ▸p K)) (sym [id]F) (⊃elim {proj₁ Γ} {K}{L} {proj₂ Γ} pf)
; _∧_ = _∧_
; ∧[] = refl
; ∧intro = ∧intro
; ∧elim₁ = ∧elim₁
; ∧elim₂ = ∧elim₂
; _∨_ = _∨_
; ∨[] = refl
; ∨elim = λ {Γ}{K}{L}{C} PfK PfL PfKL → substp (Pf (proj₂ Γ)) [id]F (∨elim PfK PfL PfKL)
; ∨intro₁ = ∨intro₁
; ∨intro₂ = ∨intro₂
; Tm = λ (Γt ,Σ Γp) → Tm Γt
; _[_]t = λ t (γt ,Σ γp) → t [ γt ]t
; [∘]t = λ {(Γt ,Σ Γp)} {t} → [∘]t {Γt} {t}
; [id]t = [id]t
; _▸t = λ (Γt ,Σ Γp) → (Γt ▸t) ,Σ Γp [ pt ]C
; _,t_ = λ {Γ} {Δ} (γt ,Σ γp) t → (γt ,t t) ,Σ substp (λ x → Subp (proj₂ Δ) x) (sym (trans (sym [∘]C) (cong (λ x → (proj₂ Γ) [ x ]C) ▸tβ₁))) γp
; pt = λ {(Γt ,Σ Γp)} → pt {Γt} ,Σ (idp {Γt ▸t} {Γp [ pt ]C })
; qt = λ {(Γt ,Σ Γp)} → qt {Γt}
; ▸tβ₁ = mk,sp= ▸tβ₁
; ▸tβ₂ = refl
; ▸tη = mk,sp= ▸tη
; Tms = λ (Γt ,Σ Γp) → Tms Γt -- Tms
; _[_]ts = λ ts (γt ,Σ γp) → ts [ γt ]ts
; [∘]ts = [∘]ts
; [id]ts = [id]ts
; εs = *
; ◆sη = λ _ → refl
; _,s_ = _,Σ_
; π₁ = proj₁
; π₂ = proj₂
; ▸sβ₁ = refl
; ▸sβ₂ = refl
; ▸sη = refl
; ,[] = refl
; fun = fun
; fun[] = refl
; rel = rel
; rel[] = refl
; ∀' = ∀'
; ∀[] = refl
; ∀intro = ∀intro
; ∀elim = ∀elim
; ∃' = ∃'
; ∃[] = refl
; ∃intro = ∃intro
; ∃elim = λ {Γ}{K}{L} Pf∃K PfL → ∃elim Pf∃K (substp (Pf (proj₂ Γ [ ⌜ V.wk V.id ⌝ ]C ▸p K) ) (cong (L [_]F) ▸tβ₁) PfL)
; Eq = Eq
; Eq[] = refl
; Eqrefl = ref
; subst' = λ K → subst' K
; dne = dne
}
where
open I