|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +# Author: Rico Sennrich |
| 4 | + |
| 5 | +"""Use operations learned with learn_bpe.py to encode a new text. |
| 6 | +The text will not be smaller, but use only a fixed vocabulary, with rare words |
| 7 | +encoded as variable-length sequences of subword units. |
| 8 | +
|
| 9 | +Reference: |
| 10 | +Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units. |
| 11 | +Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. |
| 12 | +""" |
| 13 | + |
| 14 | +from __future__ import unicode_literals, division |
| 15 | + |
| 16 | +import sys |
| 17 | +import os |
| 18 | +import inspect |
| 19 | +import codecs |
| 20 | +import io |
| 21 | +import argparse |
| 22 | +import re |
| 23 | +import warnings |
| 24 | + |
| 25 | +# hack for python2/3 compatibility |
| 26 | +from io import open |
| 27 | +argparse.open = open |
| 28 | + |
| 29 | +class BPE(object): |
| 30 | + |
| 31 | + def __init__(self, codes, merges=-1, separator='@@', vocab=None, glossaries=None): |
| 32 | + |
| 33 | + codes.seek(0) |
| 34 | + offset=1 |
| 35 | + |
| 36 | + # check version information |
| 37 | + firstline = codes.readline() |
| 38 | + if firstline.startswith('#version:'): |
| 39 | + self.version = tuple([int(x) for x in re.sub(r'(\.0+)*$','', firstline.split()[-1]).split(".")]) |
| 40 | + offset += 1 |
| 41 | + else: |
| 42 | + self.version = (0, 1) |
| 43 | + codes.seek(0) |
| 44 | + |
| 45 | + self.bpe_codes = [tuple(item.strip('\r\n ').split(' ')) for (n, item) in enumerate(codes) if (n < merges or merges == -1)] |
| 46 | + |
| 47 | + for i, item in enumerate(self.bpe_codes): |
| 48 | + if len(item) != 2: |
| 49 | + sys.stderr.write('Error: invalid line {0} in BPE codes file: {1}\n'.format(i+offset, ' '.join(item))) |
| 50 | + sys.stderr.write('The line should exist of exactly two subword units, separated by whitespace\n') |
| 51 | + sys.exit(1) |
| 52 | + |
| 53 | + # some hacking to deal with duplicates (only consider first instance) |
| 54 | + self.bpe_codes = dict([(code,i) for (i,code) in reversed(list(enumerate(self.bpe_codes)))]) |
| 55 | + |
| 56 | + self.bpe_codes_reverse = dict([(pair[0] + pair[1], pair) for pair,i in self.bpe_codes.items()]) |
| 57 | + |
| 58 | + self.separator = separator |
| 59 | + |
| 60 | + self.vocab = vocab |
| 61 | + |
| 62 | + self.glossaries = glossaries if glossaries else [] |
| 63 | + |
| 64 | + self.cache = {} |
| 65 | + |
| 66 | + def process_line(self, line): |
| 67 | + """segment line, dealing with leading and trailing whitespace""" |
| 68 | + |
| 69 | + out = "" |
| 70 | + |
| 71 | + leading_whitespace = len(line)-len(line.lstrip('\r\n ')) |
| 72 | + if leading_whitespace: |
| 73 | + out += line[:leading_whitespace] |
| 74 | + |
| 75 | + out += self.segment(line) |
| 76 | + |
| 77 | + trailing_whitespace = len(line)-len(line.rstrip('\r\n ')) |
| 78 | + if trailing_whitespace and trailing_whitespace != len(line): |
| 79 | + out += line[-trailing_whitespace:] |
| 80 | + |
| 81 | + return out |
| 82 | + |
| 83 | + def segment(self, sentence): |
| 84 | + """segment single sentence (whitespace-tokenized string) with BPE encoding""" |
| 85 | + segments = self.segment_tokens(sentence.strip('\r\n ').split(' ')) |
| 86 | + return ' '.join(segments) |
| 87 | + |
| 88 | + def segment_tokens(self, tokens): |
| 89 | + """segment a sequence of tokens with BPE encoding""" |
| 90 | + output = [] |
| 91 | + for word in tokens: |
| 92 | + # eliminate double spaces |
| 93 | + if not word: |
| 94 | + continue |
| 95 | + new_word = [out for segment in self._isolate_glossaries(word) |
| 96 | + for out in encode(segment, |
| 97 | + self.bpe_codes, |
| 98 | + self.bpe_codes_reverse, |
| 99 | + self.vocab, |
| 100 | + self.separator, |
| 101 | + self.version, |
| 102 | + self.cache, |
| 103 | + self.glossaries)] |
| 104 | + |
| 105 | + for item in new_word[:-1]: |
| 106 | + output.append(item + self.separator) |
| 107 | + output.append(new_word[-1]) |
| 108 | + |
| 109 | + return output |
| 110 | + |
| 111 | + def _isolate_glossaries(self, word): |
| 112 | + word_segments = [word] |
| 113 | + for gloss in self.glossaries: |
| 114 | + word_segments = [out_segments for segment in word_segments |
| 115 | + for out_segments in isolate_glossary(segment, gloss)] |
| 116 | + return word_segments |
| 117 | + |
| 118 | +def create_parser(subparsers=None): |
| 119 | + |
| 120 | + if subparsers: |
| 121 | + parser = subparsers.add_parser('apply-bpe', |
| 122 | + formatter_class=argparse.RawDescriptionHelpFormatter, |
| 123 | + description="learn BPE-based word segmentation") |
| 124 | + else: |
| 125 | + parser = argparse.ArgumentParser( |
| 126 | + formatter_class=argparse.RawDescriptionHelpFormatter, |
| 127 | + description="learn BPE-based word segmentation") |
| 128 | + |
| 129 | + parser.add_argument( |
| 130 | + '--input', '-i', type=argparse.FileType('r'), default=sys.stdin, |
| 131 | + metavar='PATH', |
| 132 | + help="Input file (default: standard input).") |
| 133 | + parser.add_argument( |
| 134 | + '--codes', '-c', type=argparse.FileType('r'), metavar='PATH', |
| 135 | + required=True, |
| 136 | + help="File with BPE codes (created by learn_bpe.py).") |
| 137 | + parser.add_argument( |
| 138 | + '--merges', '-m', type=int, default=-1, |
| 139 | + metavar='INT', |
| 140 | + help="Use this many BPE operations (<= number of learned symbols)"+ |
| 141 | + "default: Apply all the learned merge operations") |
| 142 | + parser.add_argument( |
| 143 | + '--output', '-o', type=argparse.FileType('w'), default=sys.stdout, |
| 144 | + metavar='PATH', |
| 145 | + help="Output file (default: standard output)") |
| 146 | + parser.add_argument( |
| 147 | + '--separator', '-s', type=str, default='@@', metavar='STR', |
| 148 | + help="Separator between non-final subword units (default: '%(default)s'))") |
| 149 | + parser.add_argument( |
| 150 | + '--vocabulary', type=argparse.FileType('r'), default=None, |
| 151 | + metavar="PATH", |
| 152 | + help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.") |
| 153 | + parser.add_argument( |
| 154 | + '--vocabulary-threshold', type=int, default=None, |
| 155 | + metavar="INT", |
| 156 | + help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV") |
| 157 | + parser.add_argument( |
| 158 | + '--glossaries', type=str, nargs='+', default=None, |
| 159 | + metavar="STR", |
| 160 | + help="Glossaries. Words matching any of the words/regex provided in glossaries will not be affected "+ |
| 161 | + "by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords. "+ |
| 162 | + "Can be provided as a list of words/regex after the --glossaries argument. Enclose each regex in quotes.") |
| 163 | + |
| 164 | + return parser |
| 165 | + |
| 166 | +def get_pairs(word): |
| 167 | + """Return set of symbol pairs in a word. |
| 168 | +
|
| 169 | + word is represented as tuple of symbols (symbols being variable-length strings) |
| 170 | + """ |
| 171 | + pairs = set() |
| 172 | + prev_char = word[0] |
| 173 | + for char in word[1:]: |
| 174 | + pairs.add((prev_char, char)) |
| 175 | + prev_char = char |
| 176 | + return pairs |
| 177 | + |
| 178 | +def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries=None): |
| 179 | + """Encode word based on list of BPE merge operations, which are applied consecutively |
| 180 | + """ |
| 181 | + |
| 182 | + if orig in cache: |
| 183 | + return cache[orig] |
| 184 | + |
| 185 | + if re.match('^({})$'.format('|'.join(glossaries)), orig): |
| 186 | + cache[orig] = (orig,) |
| 187 | + return (orig,) |
| 188 | + |
| 189 | + if version == (0, 1): |
| 190 | + word = tuple(orig) + ('</w>',) |
| 191 | + elif version == (0, 2): # more consistent handling of word-final segments |
| 192 | + word = tuple(orig[:-1]) + ( orig[-1] + '</w>',) |
| 193 | + else: |
| 194 | + raise NotImplementedError |
| 195 | + |
| 196 | + pairs = get_pairs(word) |
| 197 | + |
| 198 | + if not pairs: |
| 199 | + return orig |
| 200 | + |
| 201 | + while True: |
| 202 | + bigram = min(pairs, key = lambda pair: bpe_codes.get(pair, float('inf'))) |
| 203 | + if bigram not in bpe_codes: |
| 204 | + break |
| 205 | + first, second = bigram |
| 206 | + new_word = [] |
| 207 | + i = 0 |
| 208 | + while i < len(word): |
| 209 | + try: |
| 210 | + j = word.index(first, i) |
| 211 | + new_word.extend(word[i:j]) |
| 212 | + i = j |
| 213 | + except: |
| 214 | + new_word.extend(word[i:]) |
| 215 | + break |
| 216 | + |
| 217 | + if word[i] == first and i < len(word)-1 and word[i+1] == second: |
| 218 | + new_word.append(first+second) |
| 219 | + i += 2 |
| 220 | + else: |
| 221 | + new_word.append(word[i]) |
| 222 | + i += 1 |
| 223 | + new_word = tuple(new_word) |
| 224 | + word = new_word |
| 225 | + if len(word) == 1: |
| 226 | + break |
| 227 | + else: |
| 228 | + pairs = get_pairs(word) |
| 229 | + |
| 230 | + # don't print end-of-word symbols |
| 231 | + if word[-1] == '</w>': |
| 232 | + word = word[:-1] |
| 233 | + elif word[-1].endswith('</w>'): |
| 234 | + word = word[:-1] + (word[-1].replace('</w>',''),) |
| 235 | + |
| 236 | + if vocab: |
| 237 | + word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator) |
| 238 | + |
| 239 | + cache[orig] = word |
| 240 | + return word |
| 241 | + |
| 242 | +def recursive_split(segment, bpe_codes, vocab, separator, final=False): |
| 243 | + """Recursively split segment into smaller units (by reversing BPE merges) |
| 244 | + until all units are either in-vocabulary, or cannot be split futher.""" |
| 245 | + |
| 246 | + try: |
| 247 | + if final: |
| 248 | + left, right = bpe_codes[segment + '</w>'] |
| 249 | + right = right[:-4] |
| 250 | + else: |
| 251 | + left, right = bpe_codes[segment] |
| 252 | + except: |
| 253 | + #sys.stderr.write('cannot split {0} further.\n'.format(segment)) |
| 254 | + yield segment |
| 255 | + return |
| 256 | + |
| 257 | + if left + separator in vocab: |
| 258 | + yield left |
| 259 | + else: |
| 260 | + for item in recursive_split(left, bpe_codes, vocab, separator, False): |
| 261 | + yield item |
| 262 | + |
| 263 | + if (final and right in vocab) or (not final and right + separator in vocab): |
| 264 | + yield right |
| 265 | + else: |
| 266 | + for item in recursive_split(right, bpe_codes, vocab, separator, final): |
| 267 | + yield item |
| 268 | + |
| 269 | +def check_vocab_and_split(orig, bpe_codes, vocab, separator): |
| 270 | + """Check for each segment in word if it is in-vocabulary, |
| 271 | + and segment OOV segments into smaller units by reversing the BPE merge operations""" |
| 272 | + |
| 273 | + out = [] |
| 274 | + |
| 275 | + for segment in orig[:-1]: |
| 276 | + if segment + separator in vocab: |
| 277 | + out.append(segment) |
| 278 | + else: |
| 279 | + #sys.stderr.write('OOV: {0}\n'.format(segment)) |
| 280 | + for item in recursive_split(segment, bpe_codes, vocab, separator, False): |
| 281 | + out.append(item) |
| 282 | + |
| 283 | + segment = orig[-1] |
| 284 | + if segment in vocab: |
| 285 | + out.append(segment) |
| 286 | + else: |
| 287 | + #sys.stderr.write('OOV: {0}\n'.format(segment)) |
| 288 | + for item in recursive_split(segment, bpe_codes, vocab, separator, True): |
| 289 | + out.append(item) |
| 290 | + |
| 291 | + return out |
| 292 | + |
| 293 | + |
| 294 | +def read_vocabulary(vocab_file, threshold): |
| 295 | + """read vocabulary file produced by get_vocab.py, and filter according to frequency threshold. |
| 296 | + """ |
| 297 | + |
| 298 | + vocabulary = set() |
| 299 | + |
| 300 | + for line in vocab_file: |
| 301 | + word, freq = line.strip('\r\n ').split(' ') |
| 302 | + freq = int(freq) |
| 303 | + if threshold == None or freq >= threshold: |
| 304 | + vocabulary.add(word) |
| 305 | + |
| 306 | + return vocabulary |
| 307 | + |
| 308 | +def isolate_glossary(word, glossary): |
| 309 | + """ |
| 310 | + Isolate a glossary present inside a word. |
| 311 | +
|
| 312 | + Returns a list of subwords. In which all 'glossary' glossaries are isolated |
| 313 | +
|
| 314 | + For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is: |
| 315 | + ['1934', 'USA', 'B', 'USA'] |
| 316 | + """ |
| 317 | + # regex equivalent of (if word == glossary or glossary not in word) |
| 318 | + if re.match('^'+glossary+'$', word) or not re.search(glossary, word): |
| 319 | + return [word] |
| 320 | + else: |
| 321 | + segments = re.split(r'({})'.format(glossary), word) |
| 322 | + segments, ending = segments[:-1], segments[-1] |
| 323 | + segments = list(filter(None, segments)) # Remove empty strings in regex group. |
| 324 | + return segments + [ending.strip('\r\n ')] if ending != '' else segments |
| 325 | + |
| 326 | +if __name__ == '__main__': |
| 327 | + |
| 328 | + currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) |
| 329 | + newdir = os.path.join(currentdir, 'subword_nmt') |
| 330 | + if os.path.isdir(newdir): |
| 331 | + warnings.simplefilter('default') |
| 332 | + warnings.warn( |
| 333 | + "this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir), |
| 334 | + DeprecationWarning |
| 335 | + ) |
| 336 | + |
| 337 | + # python 2/3 compatibility |
| 338 | + if sys.version_info < (3, 0): |
| 339 | + sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) |
| 340 | + sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) |
| 341 | + sys.stdin = codecs.getreader('UTF-8')(sys.stdin) |
| 342 | + else: |
| 343 | + sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8') |
| 344 | + sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') |
| 345 | + sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True) |
| 346 | + |
| 347 | + parser = create_parser() |
| 348 | + args = parser.parse_args() |
| 349 | + |
| 350 | + # read/write files as UTF-8 |
| 351 | + args.codes = codecs.open(args.codes.name, encoding='utf-8') |
| 352 | + if args.input.name != '<stdin>': |
| 353 | + args.input = codecs.open(args.input.name, encoding='utf-8') |
| 354 | + if args.output.name != '<stdout>': |
| 355 | + args.output = codecs.open(args.output.name, 'w', encoding='utf-8') |
| 356 | + if args.vocabulary: |
| 357 | + args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8') |
| 358 | + |
| 359 | + if args.vocabulary: |
| 360 | + vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold) |
| 361 | + else: |
| 362 | + vocabulary = None |
| 363 | + |
| 364 | + if sys.version_info < (3, 0): |
| 365 | + args.separator = args.separator.decode('UTF-8') |
| 366 | + if args.glossaries: |
| 367 | + args.glossaries = [g.decode('UTF-8') for g in args.glossaries] |
| 368 | + |
| 369 | + |
| 370 | + bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries) |
| 371 | + |
| 372 | + for line in args.input: |
| 373 | + args.output.write(bpe.process_line(line)) |
0 commit comments