Replies: 2 comments
-
|
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Trying update my extension from old version to SFW in A111.
But when i try to use it, i got this error:
18:55:35 - ReActor - STATUS - Checking for any unsafe content
*** Error running postprocess_image: C:\AI_GRAPHICS\stable-diffusion-webui\extensions\sd-webui-reactor-sfw\scripts\reactor_faceswap.py
Traceback (most recent call last):
File "C:\AI_GRAPHICS\stable-diffusion-webui\modules\scripts.py", line 912, in postprocess_image
script.postprocess_image(p, pp, *script_args)
File "C:\AI_GRAPHICS\stable-diffusion-webui\extensions\sd-webui-reactor-sfw\scripts\reactor_faceswap.py", line 465, in postprocess_image
result, output, swapped = swap_face(
File "C:\AI_GRAPHICS\stable-diffusion-webui\extensions\sd-webui-reactor-sfw\scripts\reactor_swapper.py", line 391, in swap_face
if check_sfw_image(result_image) is None:
File "C:\AI_GRAPHICS\stable-diffusion-webui\extensions\sd-webui-reactor-sfw\scripts\reactor_swapper.py", line 359, in check_sfw_image
if not sfw.nsfw_image(tmp_img, NSFWDET_MODEL_PATH):
File "C:\AI_GRAPHICS\stable-diffusion-webui\extensions\sd-webui-reactor-sfw\scripts\reactor_sfw.py", line 15, in nsfw_image
result = predict(img)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\pipelines\image_classification.py", line 100, in call
return super().call(images, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\pipelines\base.py", line 1120, in call
return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\pipelines\base.py", line 1127, in run_single
model_outputs = self.forward(model_inputs, **forward_params)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\pipelines\base.py", line 1026, in forward
model_outputs = self._forward(model_inputs, **forward_params)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\pipelines\image_classification.py", line 108, in _forward
model_outputs = self.model(**model_inputs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\models\vit\modeling_vit.py", line 804, in forward
outputs = self.vit(
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\models\vit\modeling_vit.py", line 583, in forward
embedding_output = self.embeddings(
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\models\vit\modeling_vit.py", line 122, in forward
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\transformers\models\vit\modeling_vit.py", line 181, in forward
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\AI_GRAPHICS\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
return originals.Conv2d_forward(self, input)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias)
File "C:\AI_GRAPHICS\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
What should i do?
Beta Was this translation helpful? Give feedback.
All reactions