-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranslate_with_gemini.py
67 lines (53 loc) · 2.29 KB
/
translate_with_gemini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START aiplatform_gemini_translate]
import os
import vertexai
from vertexai.generative_models import GenerationResponse, GenerativeModel, Part
PROJECT_ID = os.environ.get("GOOGLE_CLOUD_PROJECT")
def translate_text(text: str, target_language_code: str = "fr") -> GenerationResponse:
"""Translates the given text to the specified target language using the Gemini model.
Args:
text (str): The text to be translated.
target_language_code (str): The language code of the target language. Defaults to "fr" (French).
Available language codes: https://cloud.google.com/translate/docs/languages#neural_machine_translation_model
Returns:
responses: The response from the model containing the translated text.
"""
# Initializes the Vertex AI with the specified project and location
vertexai.init(project=PROJECT_ID, location="europe-west2")
model = GenerativeModel("gemini-1.0-pro")
# Configuration for the text generation
generation_config = {
"candidate_count": 1,
"max_output_tokens": 50,
"temperature": 0.1,
"top_k": 1,
"top_p": 1.0,
}
# Creates a prompt with the text to be translated and the target language code
promt = Part.from_text(
f"TEXT_TO_TRANSLATE:{text}. TARGET_LANGUAGE_CODE:{target_language_code}."
)
responses = model.generate_content(
contents=[promt],
generation_config=generation_config,
)
print(responses.candidates[0].content.text)
# Example response:
# Bonjour ! Comment allez-vous aujourd'hui ?
return responses
# [END aiplatform_gemini_translate]
if __name__ == "__main__":
translate_text(text="Hello! How are you doing today?", target_language_code="fr")