-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathpdf_example.py
56 lines (44 loc) · 1.81 KB
/
pdf_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
def analyze_pdf() -> str:
# [START generativeaionvertexai_gemini_pdf]
import vertexai
from vertexai.generative_models import GenerativeModel, Part
# TODO(developer): Update project_id and location
vertexai.init(project=PROJECT_ID, location="us-central1")
model = GenerativeModel("gemini-1.5-flash-002")
prompt = """
You are a very professional document summarization specialist.
Please summarize the given document.
"""
pdf_file = Part.from_uri(
uri="gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
mime_type="application/pdf",
)
contents = [pdf_file, prompt]
response = model.generate_content(contents)
print(response.text)
# Example response:
# Here's a summary of the provided text, which appears to be a research paper on the Gemini 1.5 Pro
# multimodal large language model:
# **Gemini 1.5 Pro: Key Advancements and Capabilities**
# The paper introduces Gemini 1.5 Pro, a highly compute-efficient multimodal model
# significantly advancing long-context capabilities
# ...
# [END generativeaionvertexai_gemini_pdf]
return response.text
if __name__ == "__main__":
analyze_pdf()