-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathstreaming_code.py
53 lines (44 loc) · 1.66 KB
/
streaming_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
def streaming_prediction() -> str:
"""Streaming Code Example with a Large Language Model."""
# [START aiplatform_streaming_code]
import vertexai
from vertexai import language_models
# TODO(developer): update project_id & location
vertexai.init(project=PROJECT_ID, location="us-central1")
code_generation_model = language_models.CodeGenerationModel.from_pretrained(
"code-bison"
)
parameters = {
# Temperature controls the degree of randomness in token selection.
"temperature": 0.8,
# Token limit determines the maximum amount of text output.
"max_output_tokens": 256,
}
responses = code_generation_model.predict_streaming(
prefix="Write a function that checks if a year is a leap year.",
**parameters,
)
results = []
for response in responses:
print(response)
results.append(str(response))
results = "\n".join(results)
return results
# [END aiplatform_streaming_code]
if __name__ == "__main__":
streaming_prediction()