-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathsingle_turn_multi_image_example.py
62 lines (52 loc) · 1.96 KB
/
single_turn_multi_image_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
def generate_text_multimodal() -> str:
# [START generativeaionvertexai_gemini_single_turn_multi_image]
import vertexai
from vertexai.generative_models import GenerativeModel, Part
# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")
# Load images from Cloud Storage URI
image_file1 = Part.from_uri(
"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
mime_type="image/png",
)
image_file2 = Part.from_uri(
"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark2.png",
mime_type="image/png",
)
image_file3 = Part.from_uri(
"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark3.png",
mime_type="image/png",
)
model = GenerativeModel("gemini-1.5-flash-002")
response = model.generate_content(
[
image_file1,
"city: Rome, Landmark: the Colosseum",
image_file2,
"city: Beijing, Landmark: Forbidden City",
image_file3,
]
)
print(response.text)
# Example response:
# city: Rio de Janeiro, Landmark: Christ the Redeemer
# [END generativeaionvertexai_gemini_single_turn_multi_image]
return response.text
if __name__ == "__main__":
generate_text_multimodal()