-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathpalm_example.py
72 lines (58 loc) · 2.72 KB
/
palm_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional
from vertexai.language_models import TextGenerationResponse
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
def grounding(
data_store_location: Optional[str] = None,
data_store_id: Optional[str] = None,
) -> TextGenerationResponse:
"""Grounding example with a Large Language Model"""
# [START generativeaionvertexai_grounding]
import vertexai
from vertexai.language_models import GroundingSource, TextGenerationModel
# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")
# TODO developer - override these parameters as needed:
parameters = {
"temperature": 0.1, # Temperature controls the degree of randomness in token selection.
"max_output_tokens": 256, # Token limit determines the maximum amount of text output.
"top_p": 0.8, # Tokens are selected from most probable to least until the sum of their probabilities equals the top_p value.
"top_k": 20, # A top_k of 1 means the selected token is the most probable among all tokens.
}
model = TextGenerationModel.from_pretrained("text-bison@002")
# TODO(developer): Update and un-comment below lines
# data_store_id = "datastore_123456789012345"
# data_store_location = "global"
if data_store_id and data_store_location:
# Use Vertex AI Search data store
grounding_source = GroundingSource.VertexAISearch(
data_store_id=data_store_id, location=data_store_location
)
else:
# Use Google Search for grounding (Private Preview)
grounding_source = GroundingSource.WebSearch()
response = model.predict(
"What are the price, available colors, and storage size options of a Pixel Tablet?",
grounding_source=grounding_source,
**parameters,
)
print(f"Response from Model: {response.text}")
print(f"Grounding Metadata: {response.grounding_metadata}")
# [END generativeaionvertexai_grounding]
return response
if __name__ == "__main__":
grounding(data_store_id="data-store_1234567890123", data_store_location="global")