-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathgemini_batch_predict_bigquery.py
71 lines (54 loc) · 2.5 KB
/
gemini_batch_predict_bigquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
output_uri = "bq://storage-samples.generative_ai.gen_ai_batch_prediction.predictions"
def batch_predict_gemini_createjob(output_uri: str) -> str:
"""Perform batch text prediction using a Gemini AI model and returns the output location"""
# [START generativeaionvertexai_batch_predict_gemini_createjob_bigquery]
import time
import vertexai
from vertexai.batch_prediction import BatchPredictionJob
# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
# Initialize vertexai
vertexai.init(project=PROJECT_ID, location="us-central1")
input_uri = "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input"
# Submit a batch prediction job with Gemini model
batch_prediction_job = BatchPredictionJob.submit(
source_model="gemini-1.5-flash-002",
input_dataset=input_uri,
output_uri_prefix=output_uri,
)
# Check job status
print(f"Job resource name: {batch_prediction_job.resource_name}")
print(f"Model resource name with the job: {batch_prediction_job.model_name}")
print(f"Job state: {batch_prediction_job.state.name}")
# Refresh the job until complete
while not batch_prediction_job.has_ended:
time.sleep(5)
batch_prediction_job.refresh()
# Check if the job succeeds
if batch_prediction_job.has_succeeded:
print("Job succeeded!")
else:
print(f"Job failed: {batch_prediction_job.error}")
# Check the location of the output
print(f"Job output location: {batch_prediction_job.output_location}")
# Example response:
# Job output location: bq://Project-ID/gen-ai-batch-prediction/predictions-model-year-month-day-hour:minute:second.12345
# [END generativeaionvertexai_batch_predict_gemini_createjob_bigquery]
return batch_prediction_job
if __name__ == "__main__":
batch_predict_gemini_createjob(output_uri)