|
| 1 | +/** |
| 2 | + * Copyright 2018, Google, LLC. |
| 3 | + * Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | + * you may not use this file except in compliance with the License. |
| 5 | + * You may obtain a copy of the License at |
| 6 | + * |
| 7 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | + * |
| 9 | + * Unless required by applicable law or agreed to in writing, software |
| 10 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | + * See the License for the specific language governing permissions and |
| 13 | + * limitations under the License. |
| 14 | + */ |
| 15 | + |
| 16 | +/** |
| 17 | + * This application demonstrates how to perform basic operations on dataset |
| 18 | + * with the Google AutoML Natural Language API. |
| 19 | + * |
| 20 | + * For more information, see the documentation at |
| 21 | + * https://cloud.google.com/natural-language/automl/docs/ |
| 22 | + */ |
| 23 | + |
| 24 | +`use strict`; |
| 25 | + |
| 26 | +function createDataset(projectId, computeRegion, datasetName, multilabel) { |
| 27 | + // [START automl_natural_language_createDataset] |
| 28 | + const automl = require(`@google-cloud/automl`); |
| 29 | + |
| 30 | + const client = new automl.v1beta1.AutoMlClient(); |
| 31 | + |
| 32 | + /** |
| 33 | + * TODO(developer): Uncomment the following line before running the sample. |
| 34 | + */ |
| 35 | + // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`; |
| 36 | + // const computeRegion = `region-name, e.g. "us-central1"`; |
| 37 | + // const datasetName = `name of the dataset to create, e.g. “myDataset”`; |
| 38 | + // const multiLabel = `type of the classification problem, e.g “False”, “True” (multilabel)`; |
| 39 | + |
| 40 | + // A resource that represents Google Cloud Platform location. |
| 41 | + const projectLocation = client.locationPath(projectId, computeRegion); |
| 42 | + |
| 43 | + // Classification type is assigned based on multilabel value. |
| 44 | + let classificationType = `MULTICLASS`; |
| 45 | + if (multilabel) { |
| 46 | + classificationType = `MULTILABEL`; |
| 47 | + } |
| 48 | + |
| 49 | + // Set dataset name and metadata. |
| 50 | + const myDataset = { |
| 51 | + displayName: datasetName, |
| 52 | + textClassificationDatasetMetadata: { |
| 53 | + classificationType: classificationType, |
| 54 | + }, |
| 55 | + }; |
| 56 | + |
| 57 | + // Create a dataset with the dataset metadata in the region. |
| 58 | + client |
| 59 | + .createDataset({parent: projectLocation, dataset: myDataset}) |
| 60 | + .then(responses => { |
| 61 | + const dataset = responses[0]; |
| 62 | + |
| 63 | + // Display the dataset information. |
| 64 | + console.log(`Dataset name: ${dataset.name}`); |
| 65 | + console.log(`Dataset id: ${dataset.name.split(`/`).pop(-1)}`); |
| 66 | + console.log(`Dataset display name: ${dataset.displayName}`); |
| 67 | + console.log(`Dataset example count: ${dataset.exampleCount}`); |
| 68 | + console.log(`Text classification type:`); |
| 69 | + console.log( |
| 70 | + `\t ${dataset.textClassificationDatasetMetadata.classificationType}` |
| 71 | + ); |
| 72 | + console.log(`Dataset create time:`); |
| 73 | + console.log(`\tseconds: ${dataset.createTime.seconds}`); |
| 74 | + console.log(`\tnanos: ${dataset.createTime.nanos}`); |
| 75 | + }) |
| 76 | + .catch(err => { |
| 77 | + console.error(err); |
| 78 | + }); |
| 79 | + // [END automl_natural_language_createDataset] |
| 80 | +} |
| 81 | + |
| 82 | +function listDatasets(projectId, computeRegion, filter) { |
| 83 | + // [START automl_natural_language_listDatasets] |
| 84 | + const automl = require(`@google-cloud/automl`); |
| 85 | + |
| 86 | + const client = new automl.v1beta1.AutoMlClient(); |
| 87 | + |
| 88 | + /** |
| 89 | + * TODO(developer): Uncomment the following line before running the sample. |
| 90 | + */ |
| 91 | + // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`; |
| 92 | + // const computeRegion = `region-name, e.g. "us-central1"`; |
| 93 | + // const filter_ = `filter expressions, must specify field e.g. “imageClassificationModelMetadata:*”`; |
| 94 | + |
| 95 | + // A resource that represents a Google Cloud Platform location. |
| 96 | + const projectLocation = client.locationPath(projectId, computeRegion); |
| 97 | + |
| 98 | + // List all the datasets available in the region by applying filter. |
| 99 | + client |
| 100 | + .listDatasets({parent: projectLocation, filter: filter}) |
| 101 | + .then(responses => { |
| 102 | + const datasets = responses[0]; |
| 103 | + |
| 104 | + // Display the dataset information. |
| 105 | + console.log(`List of datasets:`); |
| 106 | + datasets.forEach(dataset => { |
| 107 | + console.log(`Dataset name: ${dataset.name}`); |
| 108 | + console.log(`Dataset id: ${dataset.name.split(`/`).pop(-1)}`); |
| 109 | + console.log(`Dataset display name: ${dataset.displayName}`); |
| 110 | + console.log(`Dataset example count: ${dataset.exampleCount}`); |
| 111 | + console.log(`Text classification type:`); |
| 112 | + console.log( |
| 113 | + `\t ${dataset.textClassificationDatasetMetadata.classificationType}` |
| 114 | + ); |
| 115 | + console.log(`Dataset create time: `); |
| 116 | + console.log(`\tseconds: ${dataset.createTime.seconds}`); |
| 117 | + console.log(`\tnanos: ${dataset.createTime.nanos}`); |
| 118 | + console.log(`\n`); |
| 119 | + }); |
| 120 | + }) |
| 121 | + .catch(err => { |
| 122 | + console.error(err); |
| 123 | + }); |
| 124 | + // [END automl_natural_language_listDatasets] |
| 125 | +} |
| 126 | + |
| 127 | +function getDataset(projectId, computeRegion, datasetId) { |
| 128 | + // [START automl_natural_language_getDataset] |
| 129 | + const automl = require(`@google-cloud/automl`); |
| 130 | + |
| 131 | + const client = new automl.v1beta1.AutoMlClient(); |
| 132 | + |
| 133 | + /** |
| 134 | + * TODO(developer): Uncomment the following line before running the sample. |
| 135 | + */ |
| 136 | + // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`; |
| 137 | + // const computeRegion = `region-name, e.g. "us-central1"`; |
| 138 | + // const datasetId = `Id of the dataset`; |
| 139 | + |
| 140 | + // Get the full path of the dataset. |
| 141 | + const datasetFullId = client.datasetPath(projectId, computeRegion, datasetId); |
| 142 | + |
| 143 | + // Get complete detail of the dataset. |
| 144 | + client |
| 145 | + .getDataset({name: datasetFullId}) |
| 146 | + .then(responses => { |
| 147 | + const dataset = responses[0]; |
| 148 | + |
| 149 | + // Display the dataset information. |
| 150 | + console.log(`Dataset name: ${dataset.name}`); |
| 151 | + console.log(`Dataset id: ${dataset.name.split(`/`).pop(-1)}`); |
| 152 | + console.log(`Dataset display name: ${dataset.displayName}`); |
| 153 | + console.log(`Dataset example count: ${dataset.exampleCount}`); |
| 154 | + console.log( |
| 155 | + `Text classification type: ${ |
| 156 | + dataset.textClassificationDatasetMetadata.classificationType |
| 157 | + }` |
| 158 | + ); |
| 159 | + console.log(`Dataset create time: `); |
| 160 | + console.log(`\tseconds: ${dataset.createTime.seconds}`); |
| 161 | + console.log(`\tnanos: ${dataset.createTime.nanos}`); |
| 162 | + }) |
| 163 | + .catch(err => { |
| 164 | + console.error(err); |
| 165 | + }); |
| 166 | + // [END automl_natural_language_getDataset] |
| 167 | +} |
| 168 | + |
| 169 | +function importData(projectId, computeRegion, datasetId, path) { |
| 170 | + // [START automl_natural_language_importDataset] |
| 171 | + const automl = require(`@google-cloud/automl`); |
| 172 | + |
| 173 | + const client = new automl.v1beta1.AutoMlClient(); |
| 174 | + |
| 175 | + /** |
| 176 | + * TODO(developer): Uncomment the following line before running the sample. |
| 177 | + */ |
| 178 | + // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`; |
| 179 | + // const computeRegion = `region-name, e.g. "us-central1"`; |
| 180 | + // const datasetId = `Id of the dataset`; |
| 181 | + // const path = `string or array of .csv paths in AutoML Vision CSV format, e.g. “gs://myproject/mytraindata.csv”;` |
| 182 | + |
| 183 | + // Get the full path of the dataset. |
| 184 | + const datasetFullId = client.datasetPath(projectId, computeRegion, datasetId); |
| 185 | + |
| 186 | + // Get the multiple Google Cloud Storage URIs. |
| 187 | + const inputUris = path.split(`,`); |
| 188 | + const inputConfig = { |
| 189 | + gcsSource: { |
| 190 | + inputUris: inputUris, |
| 191 | + }, |
| 192 | + }; |
| 193 | + |
| 194 | + // Import the dataset from the input URI. |
| 195 | + client |
| 196 | + .importData({name: datasetFullId, inputConfig: inputConfig}) |
| 197 | + .then(responses => { |
| 198 | + const operation = responses[0]; |
| 199 | + console.log(`Processing import...`); |
| 200 | + return operation.promise(); |
| 201 | + }) |
| 202 | + .then(responses => { |
| 203 | + // The final result of the operation. |
| 204 | + if (responses[2].done === true) console.log(`Data imported.`); |
| 205 | + }) |
| 206 | + .catch(err => { |
| 207 | + console.error(err); |
| 208 | + }); |
| 209 | + // [END automl_natural_language_importDataset] |
| 210 | +} |
| 211 | + |
| 212 | +function exportData(projectId, computeRegion, datasetId, outputUri) { |
| 213 | + // [START automl_natural_language_exportDataset] |
| 214 | + const automl = require(`@google-cloud/automl`); |
| 215 | + |
| 216 | + const client = new automl.v1beta1.AutoMlClient(); |
| 217 | + |
| 218 | + /** |
| 219 | + * TODO(developer): Uncomment the following line before running the sample. |
| 220 | + */ |
| 221 | + // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`; |
| 222 | + // const computeRegion = `region-name, e.g. "us-central1"`; |
| 223 | + // const datasetId = `Id of the dataset`; |
| 224 | + // const outputUri = `Google Cloud Storage URI for the export directory, e.g. “gs://myproject/output”;` |
| 225 | + |
| 226 | + // Get the full path of the dataset. |
| 227 | + const datasetFullId = client.datasetPath(projectId, computeRegion, datasetId); |
| 228 | + |
| 229 | + // Set the output URI |
| 230 | + const outputConfig = { |
| 231 | + gcsDestination: { |
| 232 | + outputUriPrefix: outputUri, |
| 233 | + }, |
| 234 | + }; |
| 235 | + |
| 236 | + // Export the data to the output URI. |
| 237 | + client |
| 238 | + .exportData({name: datasetFullId, outputConfig: outputConfig}) |
| 239 | + .then(responses => { |
| 240 | + const operation = responses[0]; |
| 241 | + console.log(`Processing export...`); |
| 242 | + return operation.promise(); |
| 243 | + }) |
| 244 | + .then(responses => { |
| 245 | + // The final result of the operation. |
| 246 | + if (responses[2].done === true) console.log(`Data exported.`); |
| 247 | + }) |
| 248 | + .catch(err => { |
| 249 | + console.error(err); |
| 250 | + }); |
| 251 | + // [END automl_natural_language_exportDataset] |
| 252 | +} |
| 253 | + |
| 254 | +function deleteDataset(projectId, computeRegion, datasetId) { |
| 255 | + // [START automl_natural_language_deleteDataset] |
| 256 | + const automl = require(`@google-cloud/automl`); |
| 257 | + |
| 258 | + const client = new automl.v1beta1.AutoMlClient(); |
| 259 | + |
| 260 | + /** |
| 261 | + * TODO(developer): Uncomment the following line before running the sample. |
| 262 | + */ |
| 263 | + // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`; |
| 264 | + // const computeRegion = `region-name, e.g. "us-central1"`; |
| 265 | + // const datasetId = `Id of the dataset`; |
| 266 | + |
| 267 | + // Get the full path of the dataset. |
| 268 | + const datasetFullId = client.datasetPath(projectId, computeRegion, datasetId); |
| 269 | + |
| 270 | + // Delete a dataset. |
| 271 | + client |
| 272 | + .deleteDataset({name: datasetFullId}) |
| 273 | + .then(responses => { |
| 274 | + const operation = responses[0]; |
| 275 | + return operation.promise(); |
| 276 | + }) |
| 277 | + .then(responses => { |
| 278 | + // The final result of the operation. |
| 279 | + if (responses[2].done === true) console.log(`Dataset deleted.`); |
| 280 | + }) |
| 281 | + .catch(err => { |
| 282 | + console.error(err); |
| 283 | + }); |
| 284 | + // [END automl_natural_language_deleteDataset] |
| 285 | +} |
| 286 | + |
| 287 | +require(`yargs`) |
| 288 | + .demand(1) |
| 289 | + .options({ |
| 290 | + computeRegion: { |
| 291 | + alias: `c`, |
| 292 | + type: `string`, |
| 293 | + default: process.env.REGION_NAME, |
| 294 | + requiresArg: true, |
| 295 | + description: `region name e.g. "us-central1"`, |
| 296 | + }, |
| 297 | + datasetName: { |
| 298 | + alias: `n`, |
| 299 | + type: `string`, |
| 300 | + default: `testDataSet`, |
| 301 | + requiresArg: true, |
| 302 | + description: `Name of the Dataset`, |
| 303 | + }, |
| 304 | + datasetId: { |
| 305 | + alias: `i`, |
| 306 | + type: `string`, |
| 307 | + requiresArg: true, |
| 308 | + description: `Id of the dataset`, |
| 309 | + }, |
| 310 | + filter: { |
| 311 | + alias: `f`, |
| 312 | + default: `text_classification_dataset_metadata:*`, |
| 313 | + type: `string`, |
| 314 | + requiresArg: false, |
| 315 | + description: `filter expression`, |
| 316 | + }, |
| 317 | + multilabel: { |
| 318 | + alias: `m`, |
| 319 | + type: `string`, |
| 320 | + default: false, |
| 321 | + requiresArg: true, |
| 322 | + description: |
| 323 | + `Type of the classification problem, ` + |
| 324 | + `False - MULTICLASS, True - MULTILABEL.`, |
| 325 | + }, |
| 326 | + outputUri: { |
| 327 | + alias: `o`, |
| 328 | + type: `string`, |
| 329 | + requiresArg: true, |
| 330 | + description: `URI (or local path) to export dataset`, |
| 331 | + }, |
| 332 | + path: { |
| 333 | + alias: `p`, |
| 334 | + type: `string`, |
| 335 | + global: true, |
| 336 | + default: `gs://nodejs-docs-samples-vcm/flowerTraindataMini.csv`, |
| 337 | + requiresArg: true, |
| 338 | + description: `URI or local path to input .csv, or array of .csv paths`, |
| 339 | + }, |
| 340 | + projectId: { |
| 341 | + alias: `z`, |
| 342 | + type: `number`, |
| 343 | + default: process.env.GCLOUD_PROJECT, |
| 344 | + requiresArg: true, |
| 345 | + description: `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`, |
| 346 | + }, |
| 347 | + }) |
| 348 | + .command(`create-dataset`, `creates a new Dataset`, {}, opts => |
| 349 | + createDataset( |
| 350 | + opts.projectId, |
| 351 | + opts.computeRegion, |
| 352 | + opts.datasetName, |
| 353 | + opts.multilabel |
| 354 | + ) |
| 355 | + ) |
| 356 | + .command(`list-datasets`, `list all Datasets`, {}, opts => |
| 357 | + listDatasets(opts.projectId, opts.computeRegion, opts.filter) |
| 358 | + ) |
| 359 | + .command(`get-dataset`, `Get a Dataset`, {}, opts => |
| 360 | + getDataset(opts.projectId, opts.computeRegion, opts.datasetId) |
| 361 | + ) |
| 362 | + .command(`delete-dataset`, `Delete a dataset`, {}, opts => |
| 363 | + deleteDataset(opts.projectId, opts.computeRegion, opts.datasetId) |
| 364 | + ) |
| 365 | + .command(`import-data`, `Import labeled items into dataset`, {}, opts => |
| 366 | + importData(opts.projectId, opts.computeRegion, opts.datasetId, opts.path) |
| 367 | + ) |
| 368 | + .command( |
| 369 | + `export-data`, |
| 370 | + `Export a dataset to a Google Cloud Storage Bucket`, |
| 371 | + {}, |
| 372 | + opts => |
| 373 | + exportData( |
| 374 | + opts.projectId, |
| 375 | + opts.computeRegion, |
| 376 | + opts.datasetId, |
| 377 | + opts.outputUri |
| 378 | + ) |
| 379 | + ) |
| 380 | + .example(`node $0 create-dataset -n "newDataSet"`) |
| 381 | + .example(`node $0 list-datasets -f "imageClassificationDatasetMetadata:*"`) |
| 382 | + .example(`node $0 get-dataset -i "DATASETID"`) |
| 383 | + .example(`node $0 delete-dataset -i "DATASETID"`) |
| 384 | + .example( |
| 385 | + `node $0 import-data -i "dataSetId" -p "gs://myproject/mytraindata.csv"` |
| 386 | + ) |
| 387 | + .example( |
| 388 | + `node $0 export-data -i "dataSetId" -o "gs://myproject/outputdestination.csv"` |
| 389 | + ) |
| 390 | + .wrap(120) |
| 391 | + .recommendCommands() |
| 392 | + .help() |
| 393 | + .strict().argv; |
0 commit comments