-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathtuning.js
104 lines (92 loc) · 3.17 KB
/
tuning.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(
project,
pipelineJobId,
modelDisplayName,
gcsOutputDirectory,
location = 'europe-west4',
datasetUri = 'gs://cloud-samples-data/ai-platform/generative_ai/headline_classification.jsonl',
trainSteps = 300
) {
// [START aiplatform_model_tuning]
// [START generativeaionvertexai_model_tuning]
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {PipelineServiceClient} = aiplatform.v1;
// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'europe-west4-aiplatform.googleapis.com',
};
const model = 'text-bison@001';
const pipelineClient = new PipelineServiceClient(clientOptions);
async function tuneLLM() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
const parameters = {
train_steps: helpers.toValue(trainSteps),
project: helpers.toValue(project),
location: helpers.toValue('us-central1'),
dataset_uri: helpers.toValue(datasetUri),
large_model_reference: helpers.toValue(model),
model_display_name: helpers.toValue(modelDisplayName),
accelerator_type: helpers.toValue('GPU'), // Optional: GPU or TPU
};
const runtimeConfig = {
gcsOutputDirectory,
parameterValues: parameters,
};
const pipelineJob = {
templateUri:
'https://us-kfp.pkg.dev/ml-pipeline/large-language-model-pipelines/tune-large-model/v2.0.0',
displayName: 'my-tuning-job',
runtimeConfig,
};
const createPipelineRequest = {
parent,
pipelineJob,
pipelineJobId,
};
await new Promise((resolve, reject) => {
pipelineClient.createPipelineJob(createPipelineRequest).then(
response => resolve(response),
e => reject(e)
);
}).then(response => {
const [result] = response;
console.log('Tuning pipeline job:');
console.log(`\tName: ${result.name}`);
console.log(
`\tCreate time: ${new Date(1970, 0, 1)
.setSeconds(result.createTime.seconds)
.toLocaleString()}`
);
console.log(`\tStatus: ${result.status}`);
});
}
await tuneLLM();
// [END aiplatform_model_tuning]
// [END generativeaionvertexai_model_tuning]
}
exports.tuneModel = main;