-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathpredict-text-embeddings-preview.js
65 lines (59 loc) · 2.52 KB
/
predict-text-embeddings-preview.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main() {
// [START generativeaionvertexai_sdk_embedding]
// TODO(developer): Update the following for your own use case.
const project = 'long-door-651';
const model = 'text-embedding-005';
const location = 'us-central1';
// Calculate the embedding for code blocks. Using 'RETRIEVAL_DOCUMENT' for corpus.
// Specify the task type as 'CODE_RETRIEVAL_QUERY' for query, e.g. 'Retrieve a function that adds two numbers'.
const texts =
'def func(a, b): return a + b;def func(a, b): return a - b;def func(a, b): return (a ** 2 + b ** 2) ** 0.5';
const task = 'RETRIEVAL_DOCUMENT';
const dimensionality = 3;
const apiEndpoint = 'us-central1-aiplatform.googleapis.com';
const aiplatform = require('@google-cloud/aiplatform');
const {PredictionServiceClient} = aiplatform.v1;
const {helpers} = aiplatform; // helps construct protobuf.Value objects.
const clientOptions = {apiEndpoint: apiEndpoint};
const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;
const parameters = helpers.toValue({
outputDimensionality: parseInt(dimensionality),
});
async function callPredict() {
const instances = texts
.split(';')
.map(e => helpers.toValue({content: e, task_type: task}));
const request = {endpoint, instances, parameters};
const client = new PredictionServiceClient(clientOptions);
const [response] = await client.predict(request);
const predictions = response.predictions;
const embeddings = predictions.map(p => {
const embeddingsProto = p.structValue.fields.embeddings;
const valuesProto = embeddingsProto.structValue.fields.values;
return valuesProto.listValue.values.map(v => v.numberValue);
});
console.log('Got embeddings: \n' + JSON.stringify(embeddings));
}
await callPredict();
// [END generativeaionvertexai_sdk_embedding]
}
main().catch(err => {
console.error(err);
process.exitCode = 1;
});