-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathpredict-custom-trained-model.js
105 lines (93 loc) · 3.66 KB
/
predict-custom-trained-model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(filename, endpointId, project, location = 'us-central1') {
// [START aiplatform_predict_custom_trained_model_sample]
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const filename = "YOUR_PREDICTION_FILE_NAME";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const util = require('util');
const {readFile} = require('fs');
const readFileAsync = util.promisify(readFile);
// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = require('@google-cloud/aiplatform');
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);
async function predictCustomTrainedModel() {
// Configure the parent resource
const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
const parameters = {
structValue: {
fields: {},
},
};
const instanceDict = await readFileAsync(filename, 'utf8');
const instanceValue = JSON.parse(instanceDict);
const instance = {
structValue: {
fields: {
Age: {stringValue: instanceValue['Age']},
Balance: {stringValue: instanceValue['Balance']},
Campaign: {stringValue: instanceValue['Campaign']},
Contact: {stringValue: instanceValue['Contact']},
Day: {stringValue: instanceValue['Day']},
Default: {stringValue: instanceValue['Default']},
Deposit: {stringValue: instanceValue['Deposit']},
Duration: {stringValue: instanceValue['Duration']},
Housing: {stringValue: instanceValue['Housing']},
Job: {stringValue: instanceValue['Job']},
Loan: {stringValue: instanceValue['Loan']},
MaritalStatus: {stringValue: instanceValue['MaritalStatus']},
Month: {stringValue: instanceValue['Month']},
PDays: {stringValue: instanceValue['PDays']},
POutcome: {stringValue: instanceValue['POutcome']},
Previous: {stringValue: instanceValue['Previous']},
},
},
};
const instances = [instance];
const request = {
endpoint,
instances,
parameters,
};
// Predict request
const [response] = await predictionServiceClient.predict(request);
console.log('Predict custom trained model response');
console.log(`\tDeployed model id : ${response.deployedModelId}`);
const predictions = response.predictions;
console.log('\tPredictions :');
for (const prediction of predictions) {
console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
}
}
predictCustomTrainedModel();
// [END aiplatform_predict_custom_trained_model_sample]
}
process.on('unhandledRejection', err => {
console.error(err.message);
process.exitCode = 1;
});
main(...process.argv.slice(2));