-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathgemma2PredictGpu.js
75 lines (62 loc) · 2.59 KB
/
gemma2PredictGpu.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict';
// [START generativeaionvertexai_gemma2_predict_gpu]
async function gemma2PredictGpu(predictionServiceClient) {
// Imports the Google Cloud Prediction Service Client library
const {
// TODO(developer): Uncomment PredictionServiceClient before running the sample.
// PredictionServiceClient,
helpers,
} = require('@google-cloud/aiplatform');
/**
* TODO(developer): Update these variables before running the sample.
*/
const projectId = 'your-project-id';
const endpointRegion = 'your-vertex-endpoint-region';
const endpointId = 'your-vertex-endpoint-id';
// Default configuration
const config = {maxOutputTokens: 1024, temperature: 0.9, topP: 1.0, topK: 1};
// Prompt used in the prediction
const prompt = 'Why is the sky blue?';
// Encapsulate the prompt in a correct format for GPUs
// Example format: [{inputs: 'Why is the sky blue?', parameters: {temperature: 0.9}}]
const input = {
inputs: prompt,
parameters: config,
};
// Convert input message to a list of GAPIC instances for model input
const instances = [helpers.toValue(input)];
// TODO(developer): Uncomment apiEndpoint and predictionServiceClient before running the sample.
// const apiEndpoint = `${endpointRegion}-aiplatform.googleapis.com`;
// Create a client
// predictionServiceClient = new PredictionServiceClient({apiEndpoint});
// Call the Gemma2 endpoint
const gemma2Endpoint = `projects/${projectId}/locations/${endpointRegion}/endpoints/${endpointId}`;
const [response] = await predictionServiceClient.predict({
endpoint: gemma2Endpoint,
instances,
});
const predictions = response.predictions;
const text = predictions[0].stringValue;
console.log('Predictions:', text);
return text;
}
module.exports = gemma2PredictGpu;
// TODO(developer): Uncomment below lines before running the sample.
// gemma2PredictGpu(...process.argv.slice(2)).catch(err => {
// console.error(err.message);
// process.exitCode = 1;
// });
// [END generativeaionvertexai_gemma2_predict_gpu]