-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathcreate-hyperparameter-tuning-job.js
113 lines (102 loc) · 3.13 KB
/
create-hyperparameter-tuning-job.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
function main(
displayName,
containerImageUri,
project,
location = 'us-central1'
) {
// [START aiplatform_create_hyperparameter_tuning_job_sample]
/**
* TODO(developer): Uncomment these variables before running the sample.
* (Not necessary if passing values as arguments)
*/
/*
const displayName = 'YOUR HYPERPARAMETER TUNING JOB;
const containerImageUri = 'TUNING JOB CONTAINER URI;
const project = 'YOUR PROJECT ID';
const location = 'us-central1';
*/
// Imports the Google Cloud Pipeline Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);
async function createHyperParameterTuningJob() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
// Create the hyperparameter tuning job configuration
const hyperparameterTuningJob = {
displayName,
maxTrialCount: 2,
parallelTrialCount: 1,
maxFailedTrialCount: 1,
studySpec: {
metrics: [
{
metricId: 'accuracy',
goal: 'MAXIMIZE',
},
],
parameters: [
{
parameterId: 'lr',
doubleValueSpec: {
minValue: 0.001,
maxValue: 0.1,
},
},
],
},
trialJobSpec: {
workerPoolSpecs: [
{
machineSpec: {
machineType: 'n1-standard-4',
acceleratorType: 'NVIDIA_TESLA_K80',
acceleratorCount: 1,
},
replicaCount: 1,
containerSpec: {
imageUri: containerImageUri,
command: [],
args: [],
},
},
],
},
};
const [response] = await jobServiceClient.createHyperparameterTuningJob({
parent,
hyperparameterTuningJob,
});
console.log('Create hyperparameter tuning job response:');
console.log(`\tDisplay name: ${response.displayName}`);
console.log(`\tTuning job resource name: ${response.name}`);
console.log(`\tJob status: ${response.state}`);
}
createHyperParameterTuningJob();
// [END aiplatform_create_hyperparameter_tuning_job_sample]
}
process.on('unhandledRejection', err => {
console.error(err.message);
process.exitCode = 1;
});
main(...process.argv.slice(2));