-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbatch-text-predict.js
115 lines (95 loc) · 3.72 KB
/
batch-text-predict.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(projectId, inputUri, outputUri, jobDisplayName) {
// [START generativeaionvertexai_batch_text_predict]
// Imports the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;
/**
* TODO(developer): Uncomment/update these variables before running the sample.
*/
// projectId = 'YOUR_PROJECT_ID';
// Optional: URI of the input dataset.
// Could be a BigQuery table or a Google Cloud Storage file.
// E.g. "gs://[BUCKET]/[DATASET].jsonl" OR "bq://[PROJECT].[DATASET].[TABLE]"
// inputUri =
// 'gs://cloud-samples-data/batch/prompt_for_batch_text_predict.jsonl';
// Optional: URI where the output will be stored.
// Could be a BigQuery table or a Google Cloud Storage file.
// E.g. "gs://[BUCKET]/[OUTPUT].jsonl" OR "bq://[PROJECT].[DATASET].[TABLE]"
// outputUri = 'gs://batch-bucket-testing/batch_text_predict_output';
// The name of batch prediction job
// jobDisplayName = `Batch text prediction job: ${new Date().getMilliseconds()}`;
// The name of pre-trained model
const textModel = 'text-bison';
const location = 'us-central1';
// Construct your modelParameters
const parameters = {
maxOutputTokens: '200',
temperature: '0.2',
topP: '0.95',
topK: '40',
};
const parametersValue = aiplatformLib.helpers.toValue(parameters);
// Configure the parent resource
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `projects/${projectId}/locations/${location}/publishers/google/models/${textModel}`;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: `${location}-aiplatform.googleapis.com`,
};
// Instantiates a client
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);
// Perform batch text prediction using a pre-trained text generation model.
// Example of using Google Cloud Storage bucket as the input and output data source
async function callBatchTextPredicton() {
const gcsSource = new aiplatform.GcsSource({
uris: [inputUri],
});
const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
gcsSource,
instancesFormat: 'jsonl',
});
const gcsDestination = new aiplatform.GcsDestination({
outputUriPrefix: outputUri,
});
const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
gcsDestination,
predictionsFormat: 'jsonl',
});
const batchPredictionJob = new aiplatform.BatchPredictionJob({
displayName: jobDisplayName,
model: modelName,
inputConfig,
outputConfig,
modelParameters: parametersValue,
});
const request = {
parent,
batchPredictionJob,
};
// Create batch prediction job request
const [response] = await jobServiceClient.createBatchPredictionJob(request);
console.log('Raw response: ', JSON.stringify(response, null, 2));
}
await callBatchTextPredicton();
// [END generativeaionvertexai_batch_text_predict]
}
main(...process.argv.slice(2)).catch(err => {
console.error(err.message);
process.exitCode = 1;
});