-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbatch-predict-bq.js
95 lines (80 loc) · 3.23 KB
/
batch-predict-bq.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(projectId, outputUri) {
// [START generativeaionvertexai_batch_predict_gemini_createjob_bigquery]
// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;
/**
* TODO(developer): Uncomment/update these variables before running the sample.
*/
// projectId = 'YOUR_PROJECT_ID';
// URI of the output BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
// outputUri = 'bq://projectid.dataset.table';
// URI of the multimodal input BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
const inputUri =
'bq://storage-samples.generative_ai.batch_requests_for_multimodal_input';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-1.5-flash-002`;
// Specify the location of the api endpoint.
const clientOptions = {
apiEndpoint: `${location}-aiplatform.googleapis.com`,
};
// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);
// Create a Gemini batch prediction job using BigQuery input and output datasets.
async function create_batch_prediction_gemini_bq() {
const bqSource = new aiplatform.BigQuerySource({
inputUri: inputUri,
});
const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
bigquerySource: bqSource,
instancesFormat: 'bigquery',
});
const bqDestination = new aiplatform.BigQueryDestination({
outputUri: outputUri,
});
const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
bigqueryDestination: bqDestination,
predictionsFormat: 'bigquery',
});
const batchPredictionJob = new aiplatform.BatchPredictionJob({
displayName: 'Batch predict with Gemini - BigQuery',
model: modelName, // Add model parameters per request in the input BigQuery table.
inputConfig: inputConfig,
outputConfig: outputConfig,
});
const request = {
parent: parent,
batchPredictionJob,
};
// Create batch prediction job request
const [response] = await jobServiceClient.createBatchPredictionJob(request);
console.log('Response name: ', response.name);
// Example response:
// Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}
await create_batch_prediction_gemini_bq();
// [END generativeaionvertexai_batch_predict_gemini_createjob_bigquery]
}
main(...process.argv.slice(2)).catch(err => {
console.error(err.message);
process.exitCode = 1;
});