-
Notifications
You must be signed in to change notification settings - Fork 983
/
Copy pathfixtures.py
458 lines (378 loc) · 17.7 KB
/
fixtures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Common fixtures."""
import collections
import contextlib
import glob
import os
import shutil
import tempfile
import time
from pathlib import Path
import pytest
import tftest
import yaml
_REPO_ROOT = Path(__file__).parents[1]
PlanSummary = collections.namedtuple('PlanSummary', 'values counts outputs')
@contextlib.contextmanager
def _prepare_root_module(path):
"""Context manager to prepare a terraform module to be tested.
`path` is copied to a temporary directory and a few terraform files
(e.g. terraform.tfvars) are deleted to ensure a clean test
environment.
"""
# if we're copying the module, we might as well ignore files and
# directories that are automatically read by terraform. Useful
# to avoid surprises if, for example, you have an active fast
# deployment with links to configs)
ignore_patterns = shutil.ignore_patterns('*.auto.tfvars',
'*.auto.tfvars.json',
'[0-9]-*-providers.tf',
'terraform.tfstate*',
'.terraform.lock.hcl',
'terraform.tfvars', '.terraform')
with tempfile.TemporaryDirectory(dir=path.parent) as tmp_path:
tmp_path = Path(tmp_path)
# Running tests in a copy made with symlinks=True makes them run
# ~20% slower than when run in a copy made with symlinks=False.
shutil.copytree(path, tmp_path, dirs_exist_ok=True, symlinks=False,
ignore=ignore_patterns)
lockfile = _REPO_ROOT / 'tools' / 'lockfile' / '.terraform.lock.hcl'
if lockfile.exists():
shutil.copy(lockfile, tmp_path / '.terraform.lock.hcl')
yield tmp_path
def plan_summary(module_path, basedir, tf_var_files=None, extra_files=None,
extra_dirs=None, **tf_vars):
"""
Run a Terraform plan on the module located at `module_path`.
- module_path: terraform root module to run. Can be an absolute
path or relative to the root of the repository
- basedir: directory root to use for relative paths in
tf_var_files.
- tf_var_files: set of terraform variable files (tfvars) to pass
in to terraform
- extra_files: set of extra files to optionally pass
in to terraform
Returns a PlanSummary object containing 3 attributes:
- values: dictionary where the keys are terraform plan addresses
and values are the JSON representation (converted to python
types) of the attribute values of the resource.
- counts: dictionary where the keys are the terraform resource
types and the values are the number of times that type appears
in the plan
- outputs: dictionary of the modules outputs that can be
determined at plan type.
Consult [1] for mode details on the structure of values and outputs
[1] https://developer.hashicorp.com/terraform/internals/json-format
"""
# make the module_path relative to the root of the repo while still
# supporting absolute paths
module_path = _REPO_ROOT / module_path
with _prepare_root_module(module_path) as test_path:
binary = os.environ.get('TERRAFORM', 'terraform')
tf = tftest.TerraformTest(test_path, binary=binary)
extra_files = [(module_path / filename).resolve()
for x in extra_files or []
for filename in glob.glob(x, root_dir=module_path)]
extra_dirs = [
(module_path / dirname).resolve() for dirname in extra_dirs or []
]
tf.setup(extra_files=extra_files, upgrade=True)
for extra_dir in extra_dirs:
os.symlink(extra_dir, tf.tfdir / extra_dir.name)
tf_var_files = [(basedir / x).resolve() for x in tf_var_files or []]
plan = tf.plan(output=True, tf_var_file=tf_var_files, tf_vars=tf_vars)
# compute resource type counts and address->values map
values = {}
counts = collections.defaultdict(int)
counts['modules'] = counts['resources'] = 0
q = collections.deque([plan.root_module])
while q:
e = q.popleft()
if 'type' in e:
counts[e['type']] += 1
if 'values' in e:
values[e['address']] = e['values']
for x in e.get('resources', []):
counts['resources'] += 1
q.append(x)
for x in e.get('child_modules', []):
counts['modules'] += 1
q.append(x)
# extract planned outputs
outputs = plan.get('planned_values', {}).get('outputs', {})
# force the destruction of the tftest object, otherwise pytest
# will complain about unraisable exceptions caused by the context
# manager deleting temporary files, including the extra_files that
# tftest tries to remove on cleanup
del tf
return PlanSummary(values, dict(counts), outputs)
@pytest.fixture(name='plan_summary')
def plan_summary_fixture(request):
"""Return a function to generate a PlanSummary.
In the returned function `basedir` becomes optional and it defaults
to the directory of the calling test
"""
def inner(module_path, basedir=None, tf_var_files=None, extra_files=None,
extra_dirs=None, **tf_vars):
if basedir is None:
basedir = Path(request.fspath).parent
return plan_summary(module_path=module_path, basedir=basedir,
tf_var_files=tf_var_files, extra_files=extra_files,
extra_dirs=extra_dirs, **tf_vars)
return inner
def plan_validator(module_path, inventory_paths, basedir, tf_var_files=None,
extra_files=None, extra_dirs=None, **tf_vars):
summary = plan_summary(module_path=module_path, tf_var_files=tf_var_files,
extra_files=extra_files, extra_dirs=extra_dirs,
basedir=basedir, **tf_vars)
# allow single single string for inventory_paths
if not isinstance(inventory_paths, list):
inventory_paths = [inventory_paths]
for path in inventory_paths:
# allow tfvars and inventory to be relative to the caller
path = basedir / path
relative_path = path.relative_to(_REPO_ROOT)
try:
inventory = yaml.safe_load(path.read_text())
except (IOError, OSError, yaml.YAMLError) as e:
raise Exception(f'cannot read test inventory {path}: {e}')
# don't fail if the inventory is empty
inventory = inventory or {}
# If you add additional asserts to this function:
# - put the values coming from the plan on the left side of
# any comparison operators
# - put the values coming from user's inventory the right
# side of any comparison operators.
# - include a descriptive error message to the assert
print(yaml.dump({'values': summary.values}))
# print("", yaml.dump({'counts': summary.counts}))
if 'values' in inventory:
try:
validate_plan_object(inventory['values'], summary.values, relative_path,
"")
except AssertionError:
print(f'\n{path}')
print(yaml.dump({'values': summary.values}))
raise
if 'counts' in inventory:
try:
expected_counts = inventory['counts']
for type_, expected_count in expected_counts.items():
# modules and resources always exists in summary
if expected_count == 0 and type_ not in ('modules', 'resources'):
assert type_ not in summary.counts, \
f'{relative_path}: module creates resources of type `{type_}` when expected not to create any'
else:
assert type_ in summary.counts, \
f'{relative_path}: module does not create any resources of type `{type_}`'
plan_count = summary.counts[type_]
assert plan_count == expected_count, \
f'{relative_path}: count of {type_} resources failed. Got {plan_count}, expected {expected_count}'
except AssertionError:
print(f'\n{path}')
print(yaml.dump({'counts': summary.counts}))
raise
if 'outputs' in inventory:
_buffer = None
try:
expected_outputs = inventory['outputs']
for output_name, expected_output in expected_outputs.items():
assert output_name in summary.outputs, \
f'{relative_path}: module does not output `{output_name}`'
output = summary.outputs[output_name]
# assert 'value' in output, \
# f'output `{output_name}` does not have a value (is it sensitive or dynamic?)'
plan_output = output.get('value', '__missing__')
_buffer = {output_name: plan_output}
assert plan_output == expected_output, \
f'{relative_path}: output {output_name} failed. Got `{plan_output}`, expected `{expected_output}`'
except AssertionError:
if _buffer:
print(f'\n{path}')
print(yaml.dump(_buffer))
raise
return summary
def validate_plan_object(expected_value, plan_value, relative_path,
relative_address):
"""
Validate that plan object matches inventory
1. Verify each address in the user's inventory exists in the plan
2. For those address that exist on both the user's inventory and
the plan output, ensure the set of keys on the inventory are a
subset of the keys in the plan, and compare their values by
equality
3. For lists, verify that they have the same length and check
whether its members are equal (according to this function)
"""
# dictionaries / objects
if isinstance(expected_value, dict) and isinstance(plan_value, dict):
for k, v in expected_value.items():
if v == "__missing__":
assert k not in plan_value, \
f'{relative_path}: {relative_address}.{k} was expected to be missing, but exists with value: {plan_value[k]}'
else:
assert k in plan_value, \
f'{relative_path}: {relative_address}.{k} is not a valid address in the plan'
validate_plan_object(v, plan_value[k], relative_path,
f'{relative_address}.{k}')
# lists
elif isinstance(expected_value, list) and isinstance(plan_value, list):
assert len(plan_value) == len(expected_value), \
f'{relative_path}: {relative_address} has different length. Got {plan_value}, expected {expected_value}'
for i, (exp, actual) in enumerate(zip(expected_value, plan_value)):
validate_plan_object(exp, actual, relative_path,
f'{relative_address}[{i}]')
# all other objects
else:
assert plan_value == expected_value, \
f'{relative_path}: {relative_address} failed. Got `{plan_value}`, expected `{expected_value}`'
@pytest.fixture(name='plan_validator')
def plan_validator_fixture(request):
"""Return a function to build a PlanSummary and compare it to a YAML inventory.
In the returned function `basedir` becomes optional and it defaults
to the directory of the calling test'
"""
def inner(module_path, inventory_paths, basedir=None, tf_var_files=None,
**tf_vars):
if basedir is None:
basedir = Path(request.fspath).parent
return plan_validator(module_path=module_path,
inventory_paths=inventory_paths, basedir=basedir,
tf_var_files=tf_var_files, **tf_vars)
return inner
def get_tfvars_for_e2e():
_variables = [
'billing_account', 'group_email', 'organization_id', 'parent', 'prefix',
'region', 'region_secondary'
]
missing_vars = set([f'TFTEST_E2E_{k}' for k in _variables]) - set(
os.environ.keys())
if missing_vars:
raise RuntimeError(
f'Missing environment variables: {missing_vars} required to run E2E tests. '
f'Consult CONTRIBUTING.md to understand how to set them up. '
f'If you want to skip E2E tests add -k "not examples_e2e" to your pytest call'
)
tf_vars = {k: os.environ.get(f'TFTEST_E2E_{k}') for k in _variables}
if tf_vars['region'] == tf_vars['region_secondary']:
raise ValueError(
"E2E tests require distinct primary and secondary regions.")
return tf_vars
def e2e_validator(module_path, extra_files, tf_var_files, basedir=None):
"""Function running apply, plan and destroy to verify the case end to end
1. Tests whether apply does not return errors
2. Tests whether plan after apply is empty
3. Tests whether destroy does not return errors
"""
module_path = _REPO_ROOT / module_path
with _prepare_root_module(module_path) as test_path:
binary = os.environ.get('TERRAFORM', 'terraform')
tf = tftest.TerraformTest(test_path, binary=binary)
extra_files = [(module_path / filename).resolve()
for x in extra_files or []
for filename in glob.glob(x, root_dir=module_path)]
tf.setup(extra_files=extra_files, upgrade=True)
tf_var_files = [(basedir / x).resolve() for x in tf_var_files or []]
# we need only prefix variable to run the example test, all the other are passed in terraform.tfvars file
prefix = get_tfvars_for_e2e()["prefix"]
# to allow different tests to create projects (or other globally unique resources) with the same name
# bump prefix forward on each test execution
tf_vars = {
"prefix":
f'{prefix}-{int(time.time())}{os.environ.get("PYTEST_XDIST_WORKER", "0")[-2:]}'
}
try:
apply = tf.apply(tf_var_file=tf_var_files, tf_vars=tf_vars)
plan = tf.plan(output=True, tf_var_file=tf_var_files, tf_vars=tf_vars)
changes = {}
for resource_name, value in plan.resource_changes.items():
if value.get('change', {}).get('actions') != ['no-op']:
changes[resource_name] = value['change']
# compare before with after to raise more meaningful failure to the user, i.e one
# that shows how resource will change
plan_before_state = {k: v.get('before') for k, v in changes.items()}
plan_after_state = {k: v.get('after') for k, v in changes.items()}
assert plan_before_state == plan_after_state, f'Plan not empty after apply for values'
plan_before_sensitive_state = {
k: v.get('before_sensitive') for k, v in changes.items()
}
plan_after_sensitive_state = {
k: v.get('after_sensitive') for k, v in changes.items()
}
assert plan_before_sensitive_state == plan_after_sensitive_state, f'Plan not empty after apply for sensitive values'
# If above did not fail, this should not either, but left as a safety check
assert changes == {}, f'Plan not empty for following resources: {", ".join(changes.keys())}'
finally:
destroy = tf.destroy(tf_var_file=tf_var_files, tf_vars=tf_vars)
@pytest.fixture(name='e2e_validator')
def e2e_validator_fixture(request):
"""Return a function to run end-to-end test
In the returned function `basedir` becomes optional and it defaults
to the directory of the calling test
"""
def inner(module_path: str, extra_files: list, tf_var_files: list,
basedir: os.PathLike = None):
if basedir is None:
basedir = Path(request.fspath).parent
return e2e_validator(module_path, extra_files, tf_var_files, basedir)
return inner
@pytest.fixture(scope='session', name='e2e_tfvars_path_session')
def e2e_tfvars_path_session():
"""Session scoped fixture preparing end-to-end environment
Creates a GCP project for each thread. Tests reuse the same GCP project.
"""
yield from e2e_tfvars_path()
@pytest.fixture(scope='function', name='e2e_tfvars_path_function')
def e2e_tfvars_path_function():
"""Function scoped fixture preparing end-to-end environment
Creates a separate GCP project for each of E2E test run.
"""
yield from e2e_tfvars_path()
def e2e_tfvars_path():
"""Fixture preparing end-to-end test environment
If TFTEST_E2E_TFVARS_PATH is set in the environment, then assume the environment is already provisioned
and necessary variables are set in the file to which variable is pointing to.
Otherwise, create a unique test environment (in case of multiple workers - as many environments as
there are workers), that will be injected into each example test instead of `tests/examples/variables.tf`.
Returns path to tfvars file that contains information about environment to use for the tests.
"""
if tfvars_path := os.environ.get('TFTEST_E2E_TFVARS_PATH'):
# no need to set up the project
if int(os.environ.get('PYTEST_XDIST_WORKER_COUNT', '0')) > 1:
raise RuntimeError(
'Setting TFTEST_E2E_TFVARS_PATH is not compatible with running tests in parallel'
)
yield tfvars_path
else:
with _prepare_root_module(_REPO_ROOT / 'tests' / 'examples_e2e' /
'setup_module') as test_path:
binary = os.environ.get('TERRAFORM', 'terraform')
tf = tftest.TerraformTest(test_path, binary=binary)
tf_vars_file = None
tf_vars = get_tfvars_for_e2e()
tf_vars['suffix'] = os.environ.get(
"PYTEST_XDIST_WORKER",
"0")[-2:] # take at most 2 last chars for suffix
tf_vars['timestamp'] = str(int(time.time()))
if 'TFTEST_E2E_SETUP_TFVARS_PATH' in os.environ:
tf_vars_file = os.environ["TFTEST_E2E_SETUP_TFVARS_PATH"]
tf.setup(upgrade=True)
tf.apply(tf_vars=tf_vars, tf_var_file=tf_vars_file)
yield test_path / "e2e_tests.tfvars"
tf.destroy(tf_vars=tf_vars, tf_var_file=tf_vars_file)
# @pytest.fixture
# def repo_root():
# 'Return a pathlib.Path to the root of the repository'
# return Path(__file__).parents[1]