|
36 | 36 | # If enableInTreeAutoscaling is true, the autoscaler sidecar will be added to the Ray head pod.
|
37 | 37 | # Ray autoscaler integration is supported only for Ray versions >= 1.11.0
|
38 | 38 | # Ray autoscaler integration is Beta with KubeRay >= 0.3.0 and Ray >= 2.0.0.
|
39 |
| - # enableInTreeAutoscaling: true |
| 39 | + enableInTreeAutoscaling: true |
40 | 40 | # autoscalerOptions is an OPTIONAL field specifying configuration overrides for the Ray autoscaler.
|
41 | 41 | # The example configuration shown below below represents the DEFAULT values.
|
42 | 42 | # autoscalerOptions:
|
@@ -95,17 +95,17 @@ head:
|
95 | 95 | # Ray recommends at least 8G memory for production workloads.
|
96 | 96 | memory: "8G"
|
97 | 97 | # Sum of ephemeral storage requests must be max 10Gi on Autopilot default class.
|
98 |
| - # This includes, ray-head, gcsfuse-sidecar, and fluent-bit. |
99 |
| - ephemeral-storage: 4Gi |
| 98 | + # This includes, ray-head, gcsfuse-sidecar, fluent-bit, and ray Autoscaler sidecar which requests 1Gi by default. |
| 99 | + ephemeral-storage: 3Gi |
100 | 100 | requests:
|
101 | 101 | cpu: "4"
|
102 | 102 | memory: "8G"
|
103 |
| - ephemeral-storage: 4Gi |
| 103 | + ephemeral-storage: 3Gi |
104 | 104 | annotations:
|
105 | 105 | gke-gcsfuse/volumes: "true"
|
106 | 106 | gke-gcsfuse/cpu-limit: "1"
|
107 | 107 | gke-gcsfuse/memory-limit: 2Gi
|
108 |
| - gke-gcsfuse/ephemeral-storage-limit: 4Gi |
| 108 | + gke-gcsfuse/ephemeral-storage-limit: 3Gi |
109 | 109 | nodeSelector:
|
110 | 110 | iam.gke.io/gke-metadata-server-enabled: "true"
|
111 | 111 | tolerations: []
|
@@ -165,7 +165,9 @@ worker:
|
165 | 165 | # uncomment the line below
|
166 | 166 | # disabled: true
|
167 | 167 | groupName: workerGroup
|
168 |
| - replicas: 1 |
| 168 | + replicas: 0 |
| 169 | + minReplicas: 0 |
| 170 | + maxReplicas: 5 |
169 | 171 | type: worker
|
170 | 172 | labels:
|
171 | 173 | cloud.google.com/gke-ray-node-type: worker
|
|
0 commit comments