Skip to content

Object Of type None type #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
buhahemal opened this issue Jul 8, 2019 · 1 comment
Open

Object Of type None type #8

buhahemal opened this issue Jul 8, 2019 · 1 comment

Comments

@buhahemal
Copy link

buhahemal commented Jul 8, 2019

Traceback (most recent call last):
File "recognize.py", line 158, in
hand = segment(gray)
File "recognize.py", line 38, in segment
if len(cnts) == 0:
TypeError: object of type 'NoneType' has no len()

Here Is My Code

organize imports

import cv2
import imutils
import numpy as np
from sklearn.metrics import pairwise

global variables

bg = None

#-------------------------------------------------------------------------------

Function - To find the running average over the background

#-------------------------------------------------------------------------------
def run_avg(image, accumWeight):
global bg
# initialize the background
if bg is None:
bg = image.copy().astype("float")
return

# compute weighted average, accumulate it and update the background
cv2.accumulateWeighted(image, bg, accumWeight)

#-------------------------------------------------------------------------------

Function - To segment the region of hand in the image

#-------------------------------------------------------------------------------
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)

# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]

# get the contours in the thresholded image
(_, cnts) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# return None, if no contours detected
if len(cnts) == 0:
    return
else:
    # based on contour area, get the maximum contour which is the hand
    segmented = max(cnts, key=cv2.contourArea)
    return (thresholded, segmented)

#-------------------------------------------------------------------------------

Function - To count the number of fingers in the segmented hand region

#-------------------------------------------------------------------------------
def count(thresholded, segmented):
# find the convex hull of the segmented hand region
chull = cv2.convexHull(segmented)

# find the most extreme points in the convex hull
extreme_top    = tuple(chull[chull[:, :, 1].argmin()][0])
extreme_bottom = tuple(chull[chull[:, :, 1].argmax()][0])
extreme_left   = tuple(chull[chull[:, :, 0].argmin()][0])
extreme_right  = tuple(chull[chull[:, :, 0].argmax()][0])

# find the center of the palm
cX = (extreme_left[0] + extreme_right[0]) // 2
cY = (extreme_top[1] + extreme_bottom[1]) // 2

# find the maximum euclidean distance between the center of the palm
# and the most extreme points of the convex hull
distance = pairwise.euclidean_distances([(cX, cY)], Y=[extreme_left, extreme_right, extreme_top, extreme_bottom])[0]
maximum_distance = distance[distance.argmax()]

# calculate the radius of the circle with 80% of the max euclidean distance obtained
radius = int(0.8 * maximum_distance)

# find the circumference of the circle
circumference = (2 * np.pi * radius)

# take out the circular region of interest which has 
# the palm and the fingers
circular_roi = np.zeros(thresholded.shape[:2], dtype="uint8")

# draw the circular ROI
cv2.circle(circular_roi, (cX, cY), radius, 255, 1)

# take bit-wise AND between thresholded hand using the circular ROI as the mask
# which gives the cuts obtained using mask on the thresholded hand image
circular_roi = cv2.bitwise_and(thresholded, thresholded, mask=circular_roi)

# compute the contours in the circular ROI
(_, cnts) = cv2.findContours(circular_roi.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# initalize the finger count
count = 0

# loop through the contours found
for c in cnts:
	# compute the bounding box of the contour
	(x, y, w, h) = cv2.boundingRect(c)

	# increment the count of fingers only if -
	# 1. The contour region is not the wrist (bottom area)
	# 2. The number of points along the contour does not exceed
	#     25% of the circumference of the circular ROI
	if ((cY + (cY * 0.25)) > (y + h)) and ((circumference * 0.25) > c.shape[0]):
		count += 1

return count

#-------------------------------------------------------------------------------

Main function

#-------------------------------------------------------------------------------
if name == "main":
# initialize accumulated weight
accumWeight = 0.5

# get the reference to the webcam
camera = cv2.VideoCapture('http://192.168.43.52:4747/video')

# region of interest (ROI) coordinates
top, right, bottom, left = 10, 350, 225, 590

# initialize num of frames
num_frames = 0

# calibration indicator
calibrated = False

# keep looping, until interrupted
while(True):
    # get the current frame
    (grabbed, frame) = camera.read()

    # resize the frame
    frame = imutils.resize(frame, width=700)

    # flip the frame so that it is not the mirror view
    frame = cv2.flip(frame, 1)

    # clone the frame
    clone = frame.copy()

    # get the height and width of the frame
    (height, width) = frame.shape[:2]

    # get the ROI
    roi = frame[top:bottom, right:left]

    # convert the roi to grayscale and blur it
    gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (7, 7), 0)

    # to get the background, keep looking till a threshold is reached
    # so that our weighted average model gets calibrated
    if num_frames < 30:
        run_avg(gray, accumWeight)
        if num_frames == 1:
        	print ('[STATUS] please wait! calibrating...')
        elif num_frames == 29:
            print ('[STATUS] calibration successfull...')       
    else:
        print('StartProcess')
        # segment the hand region
        hand = segment(gray)

        # check whether hand region is segmented
        if hand is not None:
            # if yes, unpack the thresholded image and
            # segmented region
            (thresholded, segmented) = hand

            # draw the segmented region and display the frame
            cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))

            # count the number of fingers
            fingers = count(thresholded, segmented)
            
            cv2.putText(clone, str(fingers), (70, 45), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
            
            # show the thresholded image
            cv2.imshow("Thesholded", thresholded)

    # draw the segmented hand
    cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)

    # increment the number of frames
    num_frames += 1

    # display the frame with segmented hand
    cv2.imshow("Video Feed", clone)

    # observe the keypress by the user
    keypress = cv2.waitKey(1) & 0xFF

    # if the user pressed "q", then stop looping
    if keypress == ord("q"):
        break

free up memory

camera.release()
cv2.destroyAllWindows()

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants
@buhahemal and others